The Geometry of Spacetime

Thomas Felipe Campos Bastos

March 28, 2018

Thomas Felipe Campos Bastos (IFUSP)

The Geometry of Spacetime

March 28, 2018 1 / 68

Nature makes the action

$$S = \int_{t_a}^{t_b} L \, \mathrm{d}t$$

as small as possible

3

This happens when L = T - V satisfies

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right) = \frac{\partial L}{\partial x^{i}}$$

These are the so called Euler-Lagrange equations

3

- - E

Image: A math a math

For a free particle it's just a line

$$L=\frac{m}{2}(\dot{x}^2+\dot{y}^2)$$

$$\frac{d}{dt}\left(\frac{dx^{i}}{dt}\right) = 0$$

Thomas Felipe Campos Bastos (IFUSP)

3

-

Image: A match a ma

For a free particle it's just a line

Figure: Motion of a free particle

Thomas Felipe Campos Bastos (IFUSP)

イロト イ団ト イヨト イヨト

3

Our best friend forever: $S^2 = {\mathbf{x} \in \mathbb{R}^3; \|\mathbf{x}\| = R}$

3

イロト イヨト イヨト イヨト

Our best friend forever: $S^2 = {\mathbf{x} \in \mathbb{R}^3; \|\mathbf{x}\| = R}$

$$v^2 = R^2 \dot{\theta}^2 + R^2 \dot{\phi}^2 \sin^2 \theta$$

3

イロト イヨト イヨト イヨト

Our best friend forever: $S^2 = {\mathbf{x} \in \mathbb{R}^3; \|\mathbf{x}\| = R}$

$$v^2 = R^2 \dot{\theta}^2 + R^2 \dot{\phi}^2 \sin^2 \theta$$

Which gives us ...

3

$$\ddot{ heta} - \sin heta \cos heta \, \dot{\phi}^2 = 0$$

 $\ddot{\phi} + 2 \cot heta \, \dot{ heta} \, \dot{\phi} = 0$

Very complicated... let's use symmetry !

Thomas Felipe Campos Bastos (IFUSP)

3

Particle in the equator with constant angular velocity is a solution

3

Particle in the equator with constant angular velocity is a solution

Symmetry says that every Great Circle is a solution !

Figure: Great circle in purple S^2

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

For a free particle, where $x^1 = x$ and $x^2 = y$:

$$\ddot{x}^1 = 0$$
$$\ddot{x}^2 = 0$$

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

For a free particle, where $x^1 = x$ and $x^2 = y$:

$$\ddot{x}^1 = 0$$
$$\ddot{x}^2 = 0$$

For a free particle in S^2 , where $x^1 = \theta$ and $x^2 = \phi$:

$$\ddot{x}^{1} + (-\sin x^{1} \cos x^{1}) \dot{x}^{2} \dot{x}^{2} = 0$$
$$\ddot{x}^{2} + (2 \cot x^{1}) \dot{x}^{2} \dot{x}^{2} = 0$$

Thomas Felipe Campos Bastos (IFUSP)

イロト 不得下 イヨト イヨト

Geodesic equation for a general surface embedded in \mathbb{R}^3 :

$$\ddot{x}^i + \sum_{j,k} \Gamma^i{}_{jk} \dot{x}^j \dot{x}^k = 0$$

Information about the curvature must be encoded in the numbers Γ^i_{jk} , called the Christoffel symbols

Geodesic equation for a general surface embedded in \mathbb{R}^3 :

$$\ddot{x}^i + \sum_{j,k} \Gamma^i{}_{jk} \dot{x}^j \dot{x}^k = 0$$

Information about the curvature must be encoded in the numbers Γ^i_{jk} , called the Christoffel symbols

From now on we use the Einstein convention, so the equation above becomes:

$$\ddot{x}^i + \Gamma^i{}_{jk} \dot{x}^j \dot{x}^k = 0$$

Thomas Felipe Campos Bastos (IFUSP)

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$\ddot{x}^i = (-\nabla \Phi)^i := f^i$$

with $\partial_i f^i = -4\pi G \rho$

3

(人間) トイヨト イヨト

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$\ddot{x}^i = (-\nabla \Phi)^i := f^i$$

with $\partial_i f^i = -4\pi G \rho$

Mixing time and space $x^{\mu} = (t, x, y, x)$

 $\ddot{x}^{0} = 0$

$$\ddot{x}^i - f^i \dot{x}^0 \dot{x}^0 = 0$$

3

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$\ddot{x}^i = (-\nabla \Phi)^i := f^i$$

with $\partial_i f^i = -4\pi G \rho$

Mixing time and space $x^{\mu} = (t, x, y, x)$

$$\ddot{x}^{0} = 0$$

$$\ddot{x}^i - f^i \dot{x}^0 \dot{x}^0 = 0$$

Geodesic equations in a curved spacetime!

Thomas Felipe Campos Bastos (IFUSP)

- 4 同 6 4 日 6 4 日 6

But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of Physics

3

But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of Physics

Figure: Spacetime may be something crazy

-

Topological Spaces

Thomas Felipe Campos Bastos (IFUSP)

3

<ロ> (日) (日) (日) (日) (日)

• $\emptyset, M \in \tau;$

- 31

- $\emptyset, M \in \tau;$
- $\{A_{\lambda}\}_{\lambda\in\Lambda}\subset\tau\implies\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau;$

(4個) (4回) (4回) (5)

• $\emptyset, M \in \tau;$

•
$$\{A_{\lambda}\}_{\lambda \in \Lambda} \subset \tau \implies \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau;$$

• $\{A_{k}\}_{k=1}^{n} \subset \tau \implies \bigcap_{k=1}^{n} A_{k} \in \tau$

• $\emptyset, M \in \tau;$

•
$$\{A_{\lambda}\}_{\lambda \in \Lambda} \subset \tau \implies \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau;$$

• $\{A_{k}\}_{k=1}^{n} \subset \tau \implies \bigcap_{k=1}^{n} A_{k} \in \tau$

The pair (M, τ) is called a *topological space*. Elements of τ are called open sets.

A map $f: (X, \tau_X) \rightarrow (Y, \tau_Y)$ is said to be continuous if:

for every $V \in \tau_Y$, $f^{-1}(V) \in \tau_X$

A map $f: (X, \tau_X) \rightarrow (Y, \tau_Y)$ is said to be continuous if:

for every
$$V \in au_Y$$
, $f^{-1}(V) \in au_X$

A bijection $X \stackrel{\varphi}{\longleftrightarrow} Y$ is said to be a *homeomorphism* if it's continuous both ways.

We say that X and Y are *homeomorphic* if there's a homeomorphism between them.

イロト イポト イヨト イヨト

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x : U \to \mathbb{R}^n$ is a homeomorphism.

イロト イポト イヨト イヨト 二日

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x : U \to \mathbb{R}^n$ is a homeomorphism.

We call U a local coordinate neighborhood and x a coordinate system.

- 4 同 6 4 日 6 4 日 6

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x : U \to \mathbb{R}^n$ is a homeomorphism.

We call U a local coordinate neighborhood and x a coordinate system.

Figure: I've seen this before...

A smooth atlas A in a topological space (M, τ) is a collection of charts $A = \{(U_{\alpha}, x_{\alpha})\}$ such that:

イロト イポト イヨト イヨト 二日

A smooth atlas A in a topological space (M, τ) is a collection of charts $A = \{(U_{\alpha}, x_{\alpha})\}$ such that:

• It covers the whole space, i.e, $M = \bigcup_{lpha} U_{lpha}$

イロト イポト イヨト イヨト 二日

A smooth atlas A in a topological space (M, τ) is a collection of charts $A = \{(U_{\alpha}, x_{\alpha})\}$ such that:

- It covers the whole space, i.e, $M = igcup_lpha U_lpha$
- If (U, x) and (V, y) are any two charts that overlaps, i.e, U ∩ V ≠ Ø then the transition map

イロト 不得 トイヨト イヨト 二日
A smooth atlas A in a topological space (M, τ) is a collection of charts $A = \{(U_{\alpha}, x_{\alpha})\}$ such that:

- It covers the whole space, i.e, $M = igcup_lpha U_lpha$
- If (U, x) and (V, y) are any two charts that overlaps, i.e, U ∩ V ≠ Ø then the transition map

$$y \circ x^{-1} : x(U \cap V) \subset \mathbb{R}^n \to y(U \cap V) \subset \mathbb{R}^n$$

is C^{∞}

Figure: The transition map $\psi \circ \varphi^{-1}$ must have derivatives of all orders

A D F A A F F A F F A

A topological space (M, τ) together with a smooth atlas \mathcal{A} is called a smooth manifold.

We also require that the topological space is Hausdorff for good properties to hold.

- 4 同 6 4 日 6 4 日 6

 $M = \mathbb{R}^n$ with the standard topology and atlas given by just one chart $(U = \mathbb{R}^n, x = id)$ is trivially a smooth manifold.

3

(日) (周) (三) (三)

 $M = \mathbb{R}^n$ with the standard topology and atlas given by just one chart $(U = \mathbb{R}^n, x = id)$ is trivially a smooth manifold. $M = S^2$ is a manifold

(日) (周) (三) (三)

 $M = \mathbb{R}^n$ with the standard topology and atlas given by just one chart $(U = \mathbb{R}^n, x = id)$ is trivially a smooth manifold. $M = S^2$ is a manifold Every surface in R^3 is a manifold

くほと くほと くほと

 $M = \mathbb{R}^n$ with the standard topology and atlas given by just one chart $(U = \mathbb{R}^n, x = id)$ is trivially a smooth manifold. $M = S^2$ is a manifold Every surface in \mathbb{R}^3 is a manifold Klein Bottle, torus, Mobius Strip ...

周下 イモト イモト

3

(日) (同) (三) (三)

We say that a function $f : M \to \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1} : x(M) \subset \mathbb{R}^n \to \mathbb{R}$ is of class C^{∞} for all charts.

イロト 不得下 イヨト イヨト

We say that a function $f : M \to \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1} : x(M) \subset \mathbb{R}^n \to \mathbb{R}$ is of class C^{∞} for all charts.

We say that a curve $\gamma : I \subset \mathbb{R} \to M$ is of class C^{∞} if $x \circ \gamma : I \subset \mathbb{R} \to x(M) \subset \mathbb{R}^n$ is of class C^{∞} for all charts.

周下 イモト イモト

We say that a function $f : M \to \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1} : x(M) \subset \mathbb{R}^n \to \mathbb{R}$ is of class C^{∞} for all charts.

We say that a curve $\gamma : I \subset \mathbb{R} \to M$ is of class C^{∞} if $x \circ \gamma : I \subset \mathbb{R} \to x(M) \subset \mathbb{R}^n$ is of class C^{∞} for all charts.

Everything is well-defined if the atlas is smooth!!

くほと くほと くほと

If (U, x) and (V, y) are any two charts that overlaps and γ is a smooth curve:

$$y \circ \gamma = (y \circ x^{-1}) \circ (x \circ \gamma)$$

3

イロト イポト イヨト イヨト

If (U, x) and (V, y) are any two charts that overlaps and γ is a smooth curve:

$$y \circ \gamma = (y \circ x^{-1}) \circ (x \circ \gamma)$$

The transition map $y \circ x^{-1}$ is smooth, thus smoothness in γ is well-defined.

Tangent Vector

- 2

<ロ> (日) (日) (日) (日) (日)

Let $p \in M$ and $\gamma : I \subset \mathbb{R} \to M$ a smooth curve where $\gamma(t_0) = p$.

イロン 不聞と 不同と 不同と

Let $p \in M$ and $\gamma : I \subset \mathbb{R} \to M$ a smooth curve where $\gamma(t_0) = p$.

The tangent vector to p, X_p , is the operator which maps smooth functions $f: M \to \mathbb{R}$ to number:

$$X_p: f \mapsto \frac{d(f \circ \gamma)}{dt}(t_0)$$

イロト 不得 トイヨト イヨト 二日

The set $T_p(M)$ of all tangent vectors to a point $p \in M$ is a vector space.

3

(日) (周) (三) (三)

The set $T_p(M)$ of all tangent vectors to a point $p \in M$ is a vector space. Linear algebra tells us that every vector space has a basis.

3

- 4 週 ト - 4 三 ト - 4 三 ト

The set $T_p(M)$ of all tangent vectors to a point $p \in M$ is a vector space. Linear algebra tells us that every vector space has a basis. Let's find a useful one:

- 4 同 6 4 日 6 4 日 6

Chart-induced basis

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_p \in T_p(M)$:

- 3

(日) (周) (三) (三)

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_p \in T_p(M)$:

$$X_{
ho}(f)=rac{d(f\circ\gamma)}{dt}=rac{\partial(f\circ x^{-1})}{\partial x^k}rac{d(x\circ\gamma)^k}{dt}$$

for some curve γ

(日) (周) (三) (三)

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_p \in T_p(M)$:

$$X_{
ho}(f) = rac{d(f\circ\gamma)}{dt} = rac{\partial(f\circ x^{-1})}{\partial x^k} rac{d(x\circ\gamma)^k}{dt}$$

for some curve γ

$$X_p(f) = \frac{d(x \circ \gamma)^k}{dt} \frac{\partial (f \circ x^{-1})}{\partial x^k}$$

Remark: $x(p) = (x^1(p), ..., x^n(p))$

Thomas Felipe Campos Bastos (IFUSP)

イロト イポト イヨト イヨト 二日

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Define the operator $\frac{\partial}{\partial x^k}$ as the one that acts on a function like

$$rac{\partial}{\partial x^k}(f) = rac{\partial (f \circ x^{-1})}{\partial x^k}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Define the operator $\frac{\partial}{\partial x^k}$ as the one that acts on a function like

$$\frac{\partial}{\partial x^k}(f) = \frac{\partial (f \circ x^{-1})}{\partial x^k}$$

In fact, the operator $\frac{\partial}{\partial x^k}$ is an element of $T_p(M)$.

Define the operator $\frac{\partial}{\partial x^k}$ as the one that acts on a function like

$$\frac{\partial}{\partial x^k}(f) = \frac{\partial (f \circ x^{-1})}{\partial x^k}$$

In fact, the operator $\frac{\partial}{\partial x^k}$ is an element of $T_p(M)$. The set of vectors $\{\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}\}$ are linearly independent!

Thomas Felipe Campos Bastos (IFUSP)

This definitions give us a nice expression:

$$X_{\rho}(f) = \frac{d(x \circ \gamma)^{k}}{dt} \frac{\partial (f \circ x^{-1})}{\partial x^{k}} = \dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)$$

3

∃ ► < ∃</p>

This definitions give us a nice expression:

$$X_{\rho}(f) = \frac{d(x \circ \gamma)^{k}}{dt} \frac{\partial (f \circ x^{-1})}{\partial x^{k}} = \dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)$$

which is equivalent to say

$$X_{p} = \dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}$$

Thomas Felipe Campos Bastos (IFUSP)

This definitions give us a nice expression:

$$X_{\rho}(f) = \frac{d(x \circ \gamma)^{k}}{dt} \frac{\partial (f \circ x^{-1})}{\partial x^{k}} = \dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)$$

which is equivalent to say

$$X_{p} = \dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}$$

Thus
$$\{\frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n}\}$$
 is a basis for $T_p(M)$.

One-forms

Thomas Felipe Campos Bastos (IFUSP)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

A one-form is a linear map $\omega : T_p(M) \to \mathbb{R}$, i.e, for all vectors $X, Y \in T_p(M)$ and $\alpha \in R$

$$\omega(X + \alpha Y) = \omega(X) + \alpha \omega(Y)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A one-form is a linear map $\omega : T_p(M) \to \mathbb{R}$, i.e, for all vectors $X, Y \in T_p(M)$ and $\alpha \in R$

$$\omega(X + \alpha Y) = \omega(X) + \alpha \omega(Y)$$

With the point sum $(\omega^1 + \alpha \omega^2)(X) = \omega^1(X) + \alpha \omega^2(X)$ the set of all one-forms $\mathcal{T}_p^*(M)$ in $p \in M$ is a vector space.

イロト イポト イヨト イヨト 二日

The differential of function f is a one-form $df : T_p(M) \to \mathbb{R}$ such that

df(X) = X(f) for all vectors $X \in T_p(M)$

イロト 不得 トイヨト イヨト 二日

The differential of function f is a one-form $df : T_p(M) \to \mathbb{R}$ such that

$$df(X) = X(f)$$
 for all vectors $X \in T_p(M)$

The homeomorphism of a chart x gives rise to the differentials of the coordinate components dx^k

(日) (同) (三) (三)

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\{dx^1, ..., dx^n\}$ is a basis of $T_p^*(M)$:

一日、

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\{dx^1, ..., dx^n\}$ is a basis of $T_p^*(M)$:

• Is linearly independent $\alpha_i dx^i = 0 \iff \alpha^i = 0$

過 ト イヨト イヨト
Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\{dx^1, ..., dx^n\}$ is a basis of $T_p^*(M)$:

- Is linearly independent $\alpha_i dx^i = 0 \iff \alpha^i = 0$
- Generates $T_p^*(M)$, i.e, $\omega = \omega(\frac{\partial}{\partial x^k}) dx^k$

くほと くほと くほと

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\{dx^1, ..., dx^n\}$ is a basis of $T_p^*(M)$:

- Is linearly independent $\alpha_i dx^i = 0 \iff \alpha^i = 0$
- Generates $T_p^*(M)$, i.e, $\omega = \omega(\frac{\partial}{\partial x^k}) dx^k$

The bases $\{\frac{\partial}{\partial x^k}\}$ and $\{dx^i\}$ are said to be dual:

$$dx^i\left(\frac{\partial}{\partial x^k}\right) = \frac{\partial}{\partial x^k}(x^i) = \delta^i_j$$

Thomas Felipe Campos Bastos (IFUSP)

- 本間 と えき と えき とうき

In particular, the differential of a function $f \in C^{\infty}(M)$ can be written as

$$df = \frac{\partial}{\partial x^k} (f) dx^k$$

Image: Image:

In particular, the differential of a function $f \in C^{\infty}(M)$ can be written as

$$df = \frac{\partial}{\partial x^k} (f) dx^k$$

Thus we generalize the notion of gradient!

Tensors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

Let $p \in M$, a tensor of type (r, s) at p is a multilinear map

$$T: T_p^* \times \ldots \times T_p^* \times T_p \times \ldots \times T_p = (T_p^*)^r \times (T_p)^s \to \mathbb{R}$$

3

(日) (周) (三) (三)

Let $p \in M$, a tensor of type (r, s) at p is a multilinear map

$$T: T_p^* \times \ldots \times T_p^* \times T_p \times \ldots \times T_p = (T_p^*)^r \times (T_p)^s \to \mathbb{R}$$

Which means that T is linear in each argument:

3

(日) (同) (三) (三)

For every vectors $X_k, X_l \in T_p$ and scalars $a, b \in \mathbb{R}$:

$$T(\omega^1, ..., \omega^r, X_1, ..., a.X_k + b.X_l, ..., X_s) =$$

- 34

イロト イポト イヨト イヨト

For every vectors $X_k, X_l \in T_p$ and scalars $a, b \in \mathbb{R}$:

$$T(\omega^1,...,\omega^r,X_1,...,a.X_k+b.X_l,...,X_s)=$$

a. $T(\omega^1, ..., \omega^r, X_1, ..., X_k, ..., X_s) + b. T(\omega^1, ..., \omega^r, X_1, ..., X_l, ..., X_s)$

For every vectors $X_k, X_l \in T_p$ and scalars $a, b \in \mathbb{R}$:

$$T(\omega^1,...,\omega^r,X_1,...,a.X_k+b.X_l,...,X_s)=$$

a.
$$T(\omega^1, ..., \omega^r, X_1, ..., X_k, ..., X_s) + b. T(\omega^1, ..., \omega^r, X_1, ..., X_l, ..., X_s)$$

And the same for one-forms.

3

(日) (周) (三) (三)

We can sum tensors and multiply by scalars:

$$(T + \alpha T')(\omega^1, ..., \omega^r, X_1, ..., X_s) =$$

$$T(\omega^1,...,\omega^r,X_1,...,X_s) + \alpha T'(\omega^1,...,\omega^r,X_1,...,X_s)$$

3

< ロ > < 同 > < 三 > < 三

We can sum tensors and multiply by scalars:

$$(T + \alpha T')(\omega^1, ..., \omega^r, X_1, ..., X_s) =$$

$$T(\omega^1,...,\omega^r,X_1,...,X_s) + \alpha T'(\omega^1,...,\omega^r,X_1,...,X_s)$$

This give the structure of a vector space to the set $T'_s(p)$ of all (r, s) tensors defined in $T^*_p \times ... \times T^*_p \times T_p \times ... \times T_p$

Thomas Felipe Campos Bastos (IFUSP)

(日) (周) (三) (三)

We can multiply a tensor by another tensor: If $R \in T_s^r$ and $S \in T_l^k$ are tensors, the tensor product $R \otimes S \in T_{s+l}^{r+k}$ is defined as

$$(R\otimes S)(\omega^1,...,\omega^r,...\omega^{r+k},X_1,...,X_s,...X_{s+l}) =$$

$$R(\omega^1, ..., \omega^r, X_1, ..., X_s) \cdot S(\omega^{r+1}, ..., \omega^{r+k}, X_{s+1}, ..., X_{s+l})$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

If $\{\frac{\partial}{\partial x^i}\}$, $\{dx^i\}$ are dual basis of T_p and T_p^* , then the set: $\{\frac{\partial}{\partial x^{a_1}} \otimes ... \otimes \frac{\partial}{\partial x^{a_r}} \otimes dx^{b_1} \otimes ... \otimes dx^{b_s}\}$

is a basis of $T_s^r(p)$, where every index $a_i, b_j \in \{1, ..., n\}$

If $\{\frac{\partial}{\partial x^i}\}$, $\{dx^i\}$ are dual basis of T_p and T_p^* , then the set: $\{\frac{\partial}{\partial x^{a_1}} \otimes ... \otimes \frac{\partial}{\partial x^{a_r}} \otimes dx^{b_1} \otimes ... \otimes dx^{b_s}\}$

is a basis of $T_s^r(p)$, where every index $a_i, b_j \in \{1, ..., n\}$ There will be n^{r+s} basis tensors

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Thus every (r, s) tensor can be written as:

$$T = T^{a_1 \dots a_r}_{b_1 \dots b_s} \frac{\partial}{\partial x^{a_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{a_r}} \otimes dx^{b_1} \otimes \dots \otimes dx^{b_s}$$

э

Thus every (r, s) tensor can be written as:

$$T = T^{a_1...a_r}_{b_1...b_s} \frac{\partial}{\partial x^{a_1}} \otimes ... \otimes \frac{\partial}{\partial x^{a_r}} \otimes dx^{b_1} \otimes ... \otimes dx^{b_s}$$

If it wasn't for Einstein's convention:

$$T = \sum_{a_1} \dots \sum_{a_r} \sum_{b_1} \dots \sum_{b_s} T^{a_1 \dots a_r}{}_{b_1 \dots b_s} \frac{\partial}{\partial x^{a_1}} \otimes \dots \otimes \frac{\partial}{\partial x^{a_r}} \otimes dx^{b_1} \otimes \dots \otimes dx^{b_s}$$

3

(日) (同) (三) (三)

WHO WOULD WIN?

The Greek letter Sigma denoting a summation

Some patent clerk

Figure: Einstein dies of ligma

Let T be a (2,0) tensor, the symmetric part of $T^{a_1a_2}$ is the (r,s) tensor defined as:

$$T^{(a_1a_2)} = \frac{1}{2!} \left(T^{a_1a_2} + T^{a_2a_1} \right)$$

3

Let T be a (2,0) tensor, the symmetric part of $T^{a_1a_2}$ is the (r,s) tensor defined as:

$$T^{(a_1a_2)} = \frac{1}{2!} \left(T^{a_1a_2} + T^{a_2a_1} \right)$$

Similarly, the skew symmetric tensor $T^{[a_1a_2]}$ is

$$T^{[a_1a_2]} = \frac{1}{2!} \left(T^{a_1a_2} - T^{a_2a_1} \right)$$

Thomas Felipe Campos Bastos (IFUSP)

(人間) とうきょうきょう

(skew) Symmetric part of a Tensor

The symmetric part of $T^{a_1a_2...a_r}_{\ b_1b_2...b_s}$ in the a_r indices is the (r, s) tensor $T^{(a_1a_2...a_r)}_{\ b_1b_2...b_s}$ defined as:

 $T^{(a_1...a_r)}_{b_1...b_s} = \frac{1}{r!}$ (sum of all permutations of the a'r indices)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

(skew) Symmetric part of a Tensor

The symmetric part of $T^{a_1a_2...a_r}_{b_1b_2...b_s}$ in the a_r indices is the (r, s) tensor $T^{(a_1a_2...a_r)}_{b_1b_2...b_s}$ defined as:

 $T^{(a_1...a_r)}_{b_1...b_s} = \frac{1}{r!}$ (sum of all permutations of the a'r indices)

Similarly, the skew symmetric tensor $T^{[a_1a_2...a_r]}_{b_1b_2...b_s}$ is

 $T^{[a_1...a_r]}_{b_1...b_s} = \frac{1}{r!}$ (alternating sum of all permutations of the a'r indices)

Let $T^{a_1a_2}_{b_1b_2}$ be a tensor of type (2,2), the contraction of T in the first two indices is a (1,1) tensor defined as:

$$C(T)^{a_2}_{b_2} = T^{a_1 a_2}_{a_1 b_2}$$

イロト 不得下 イヨト イヨト 二日

Let $T^{a_1a_2}_{b_1b_2}$ be a tensor of type (2,2), the contraction of T in the first two indices is a (1,1) tensor defined as:

$$C(T)^{a_2}_{b_2} = T^{a_1 a_2}_{a_1 b_2}$$

The generalization for a (r, s) tensor is immediate

イロト 不得下 イヨト イヨト 二日

A vector field is an association $X : M \to \bigcup_p T_p(M)$ in a way that if $p \in M$ then $X(p) = X_p \in T_p(M)$

イロト イポト イヨト イヨト 二日

A vector field is an association $X : M \to \bigcup_p T_p(M)$ in a way that if $p \in M$ then $X(p) = X_p \in T_p(M)$

A tensor field of type (r, s) is defined in a similar manner, where $T: M \ni p \mapsto T(p) \in T_s^r(p)$

イロト イポト イヨト イヨト 二日

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

 $\nabla: (X, T) \mapsto \nabla_X T$

(日) (周) (三) (三)

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

 $\nabla: (X, T) \mapsto \nabla_X T$

where $\nabla_X T$ is a (r, s) tensor field, called the covariant derivative.

イロト 不得下 イヨト イヨト 二日

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

 $\nabla: (X, T) \mapsto \nabla_X T$

where $\nabla_X T$ is a (r, s) tensor field, called the covariant derivative.

It must satisfies the following properties:

イロト 不得 トイヨト イヨト 二日

• If $f \in C^{\infty}(M)$, then $\nabla_X f = X(f)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

- If $f \in C^{\infty}(M)$, then $\nabla_X f = X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_X(\alpha Y + Z) = \alpha \nabla_X Y + \nabla_X Z$

- If $f \in C^{\infty}(M)$, then $\nabla_X f = X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_X(\alpha Y + Z) = \alpha \nabla_X Y + \nabla_X Z$
- (Leibniz's rule) $\nabla_X(T \otimes R) = \nabla_X T \otimes R + T \otimes \nabla_X R$

- If $f \in C^{\infty}(M)$, then $abla_X f = X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_X(\alpha Y + Z) = \alpha \nabla_X Y + \nabla_X Z$
- (Leibniz's rule) $\nabla_X(T \otimes R) = \nabla_X T \otimes R + T \otimes \nabla_X R$
- If $f \in C^{\infty}(M)$ and X, Y are vector fields, then $\nabla_{fX+Y}T = f \nabla_X T + \nabla_Y T$

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$\nabla_X Y = \nabla_{X^i \frac{\partial}{\partial x^i}} \left(Y^k \frac{\partial}{\partial x^k} \right)$$

3

(日) (同) (三) (三)

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$\nabla_X Y = \nabla_{X^i \frac{\partial}{\partial x^i}} \left(Y^k \frac{\partial}{\partial x^k} \right)$$
$$= X^i \nabla_{\frac{\partial}{\partial x^i}} Y^k \otimes \frac{\partial}{\partial x^k} + X^i Y^k \otimes \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$

3

< ロ > < 同 > < 三 > < 三

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$\nabla_X Y = \nabla_{X^i \frac{\partial}{\partial x^i}} \left(Y^k \frac{\partial}{\partial x^k} \right)$$
$$= X^i \nabla_{\frac{\partial}{\partial x^i}} Y^k \otimes \frac{\partial}{\partial x^k} + X^i Y^k \otimes \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$
$$X^i \frac{\partial}{\partial x^i} (Y^k) \frac{\partial}{\partial x^k} + X^i Y^k \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$

we don't know the precise form of $\nabla_{\frac{\partial}{\partial x^{l}} \frac{\partial}{\partial x^{k}}}$, but we know that it's a vector (field)!
Connection coefficients

So we can expand
$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$
 in a basis:
 $\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} = \Gamma^q_{ki} \frac{\partial}{\partial x^q}$

2

<ロ> (日) (日) (日) (日) (日)

Connection coefficients

So we can expand
$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$
 in a basis:
 $\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} = \Gamma^q_{ki} \frac{\partial}{\partial x^q}$

Therefore

$$\nabla_X Y = \left(X^i \frac{\partial}{\partial x^i} (Y^q) + X^i Y^k \Gamma^q_{ki} \right) \frac{\partial}{\partial x^q}$$

Thomas Felipe Campos Bastos (IFUSP)

3

イロト イポト イヨト イヨト

Connection coefficients

So we can expand
$$\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k}$$
 in a basis:
 $\nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} = \Gamma^q_{ki} \frac{\partial}{\partial x^q}$

Therefore

$$\nabla_X Y = \left(X^i \frac{\partial}{\partial x^i} (Y^q) + X^i Y^k \Gamma^q_{ki} \right) \frac{\partial}{\partial x^q}$$

The Γ^{q}_{ki} are called the connection coefficients.

3

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$\nabla_{X}\omega = \left(X^{i}\frac{\partial}{\partial x^{i}}(\omega_{j}) - X^{i}\omega_{k}\Gamma^{k}_{\ ji}\right)dx^{j}$$

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$\nabla_{X}\omega = \left(X^{i}\frac{\partial}{\partial x^{i}}(\omega_{j}) - X^{i}\omega_{k}\Gamma^{k}{}_{ji}\right)dx^{j}$$

And for a general tensor field we apply the Leibniz rule many times using the same construction to get to the general formula:

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$\nabla_{X}\omega = \left(X^{i}\frac{\partial}{\partial x^{i}}(\omega_{j}) - X^{i}\omega_{k}\Gamma^{k}_{\ ji}\right)dx^{j}$$

And for a general tensor field we apply the Leibniz rule many times using the same construction to get to the general formula:

$$(\nabla_X T)^{a_1 \dots a_r}{}_{b_1 \dots b_s} = X^i \frac{\partial}{\partial x^i} T^{a_1 \dots a_r}{}_{b_1 \dots b_s}$$

 $+X^{k}T^{j\dots a_{r}}_{b_{1}\dots b_{s}}\Gamma^{a_{1}}_{jk}+$ all terms in the upper indices

 $-X^{i}T^{a_{1}\ldots a_{r}}_{k\ldots b_{s}}\Gamma^{k}_{b_{1}i}$ – all terms in the lower indices

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let $\gamma: I \subset \mathbb{R} \to M$. The tangent vector field v_{γ} is such that if $p = \gamma(t)$ for some $t \in I$, then $v_{\gamma}(p) = \dot{\gamma}^{k}(p) \frac{\partial}{\partial x^{k}}$

- ∢ ≣ →

▲ # ↓ ★ ∃ ★

Parallel Transport

Let $\gamma : I \subset \mathbb{R} \to M$ and v_{γ} be the tangent vector field defined as before. A vector field X is said to be parallelly transported along γ if

$$\nabla_{v_{\gamma}}X = 0$$

Parallel Transport

Let $\gamma : I \subset \mathbb{R} \to M$ and v_{γ} be the tangent vector field defined as before. A vector field X is said to be parallelly transported along γ if

$$abla_{v_{\gamma}}X = 0$$

The curve that moves as straight as possible has its tangent vector field parallelly transported along $\gamma,$ therefore

$$abla_{m{v}_{\gamma}}m{v}_{\gamma}=0$$

The curve that moves as straight as possible has its tangent vector field parallelly transported along $\gamma,$ therefore

$$abla_{m{v}_{\gamma}}m{v}_{\gamma}=0$$

In components this is just

$$\dot{\gamma}^{m}\frac{\partial}{\partial x^{m}}(\dot{\gamma}^{q})+\dot{\gamma}^{m}\dot{\gamma}^{n}\Gamma^{q}{}_{nm}=0$$

4 AR & 4 E & 4 E &

The curve that moves as straight as possible has its tangent vector field parallelly transported along $\gamma,$ therefore

$$abla_{m{v}_{\gamma}}m{v}_{\gamma}=0$$

In components this is just

$$\dot{\gamma}^{m}\frac{\partial}{\partial x^{m}}(\dot{\gamma}^{q})+\dot{\gamma}^{m}\dot{\gamma}^{n}\Gamma^{q}_{nm}=0$$

$$\ddot{\gamma}^{q} + \Gamma^{q}{}_{nm} \dot{\gamma}^{m} \dot{\gamma}^{n} = 0$$

Thomas Felipe Campos Bastos (IFUSP)

4 AR & 4 E & 4 E &

Parallel transport

Figure: Parallel transport in flat space

Figure: Parallel transport in S^2

Curvature

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Curvature

The non-commutative behavior of the covariant derivative measures the curvature:

$$\left[\nabla_{\frac{\partial}{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}}\right] \neq 0$$

-

Let V be a vector field, then

$$\left([\nabla_{\frac{\partial}{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}}] V \right)^{\rho} =$$

3

<ロ> (日) (日) (日) (日) (日)

Let V be a vector field, then

$$\left([\nabla_{\frac{\partial}{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}}] V \right)^{\rho} =$$

$$\left(\frac{\partial}{\partial x^{\mu}}\Gamma^{\rho}_{\nu\sigma}-\frac{\partial}{\partial x^{\nu}}\Gamma_{\mu\sigma}+\Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma}-\Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right)V^{\sigma}-2\Gamma^{\lambda}_{\ \ [\mu\nu]}(\nabla_{\frac{\partial}{\partial x^{\lambda}}}V)$$

3

<ロ> (日) (日) (日) (日) (日)

Let V be a vector field, then

$$\left([\nabla_{\frac{\partial}{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}}] V \right)^{\rho} =$$

$$\left(\frac{\partial}{\partial x^{\mu}}\Gamma^{\rho}_{\nu\sigma}-\frac{\partial}{\partial x^{\nu}}\Gamma_{\mu\sigma}+\Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma}-\Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}\right)V^{\sigma}-2\Gamma^{\lambda}_{\ \ [\mu\nu]}(\nabla_{\frac{\partial}{\partial x^{\lambda}}}V)$$

If $\Gamma^{\lambda}_{\ \ [\mu\nu]}=0$ the curvature is contained in the proportional term , the Riemann tensor:

$$R^{\rho}_{\sigma\mu\nu} = \frac{\partial}{\partial x^{\mu}} \Gamma^{\rho}_{\nu\sigma} - \frac{\partial}{\partial x^{\nu}} \Gamma_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda} \Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda} \Gamma^{\lambda}_{\mu\sigma}$$

Thomas Felipe Campos Bastos (IFUSP)

3

イロト イポト イヨト イヨト

$$T(\omega, X, Y) = \omega(\nabla_X Y - \nabla_Y X - [X, Y])$$

3

$$T(\omega, X, Y) = \omega(\nabla_X Y - \nabla_Y X - [X, Y])$$

where [X, Y] is the commutator vector field such that [X, Y]f = X(Y(f)) - Y(X(f)) for every $f \in C^{\infty}(M)$

$$T(\omega, X, Y) = \omega(\nabla_X Y - \nabla_Y X - [X, Y])$$

where [X, Y] is the commutator vector field such that [X, Y]f = X(Y(f)) - Y(X(f)) for every $f \in C^{\infty}(M)$

If T = 0 the connection is said to be torsion-free

$$T(\omega, X, Y) = \omega(\nabla_X Y - \nabla_Y X - [X, Y])$$

where [X, Y] is the commutator vector field such that [X, Y]f = X(Y(f)) - Y(X(f)) for every $f \in C^{\infty}(M)$

If T = 0 the connection is said to be torsion-free

$$T^{a}_{\ bc} = 2.\Gamma^{a}_{\ [bc]} = 0 \implies \Gamma^{a}_{\ bc} = \Gamma^{a}_{\ cb}$$

Torsion tensor and Riemann tensor

The Riemann tensor is the (1,3) tensor field

$$R(\omega, Z, X, Y) = \omega(\nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z - \nabla_{[X,Y]} Z)$$

3

Torsion tensor and Riemann tensor

The Riemann tensor is the (1,3) tensor field

$$R(\omega, Z, X, Y) = \omega(\nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z - \nabla_{[X,Y]} Z)$$

In components of a chart:

$$R^{a}_{bcd} = \frac{\partial}{\partial x^{c}} (\Gamma^{a}_{db}) - \frac{\partial}{\partial x^{d}} (\Gamma^{a}_{cb}) + \Gamma^{a}_{cf} \Gamma^{f}_{db} - \Gamma^{a}_{df} \Gamma^{f}_{cb}$$

Thomas Felipe Campos Bastos (IFUSP)

3

The Riemann tensor is the (1,3) tensor field

$$R(\omega, Z, X, Y) = \omega(\nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z - \nabla_{[X,Y]} Z)$$

In components of a chart:

$$R^{a}_{bcd} = \frac{\partial}{\partial x^{c}} (\Gamma^{a}_{db}) - \frac{\partial}{\partial x^{d}} (\Gamma^{a}_{cb}) + \Gamma^{a}_{cf} \Gamma^{f}_{db} - \Gamma^{a}_{df} \Gamma^{f}_{cb}$$

The contraction of the Riemann tensor gives the Ricci tensor:

$$R_{ab} = R^c_{acb}$$

Thomas Felipe Campos Bastos (IFUSP)

The Riemann tensor is skew symmetric in the last indices:

$$R^{a}_{b(cd)}=0$$

3

The Riemann tensor is skew symmetric in the last indices:

$$R^{a}_{b(cd)}=0$$

Is symmetric in the lower indices:

$$R^{a}_{[bcd]} = 0$$

18 A.

The Riemann tensor is skew symmetric in the last indices:

$$R^{a}_{b(cd)}=0$$

Is symmetric in the lower indices:

$$R^a_{[bcd]} = 0$$

Later we'll see the geometrical significance of the Riemann tensor

Let *M* a smooth manifold. A metric $g = g_{ij}dx^i \otimes dx^j$ is a tensor field of type (0,2) such that:

3

Let *M* a smooth manifold. A metric $g = g_{ij}dx^i \otimes dx^j$ is a tensor field of type (0, 2) such that:

• g(X, Y) = g(Y, X) for all vector fields X, Y

イロト イポト イヨト イヨト 二日

Let *M* a smooth manifold. A metric $g = g_{ij}dx^i \otimes dx^j$ is a tensor field of type (0, 2) such that:

- g(X, Y) = g(Y, X) for all vector fields X, Y
- If there exist a vector field X such that g(X, Y) = 0 for all Y, then X = 0

イロト 不得下 イヨト イヨト

Let *M* a smooth manifold. A metric $g = g_{ij}dx^i \otimes dx^j$ is a tensor field of type (0, 2) such that:

- g(X, Y) = g(Y, X) for all vector fields X, Y
- If there exist a vector field X such that g(X, Y) = 0 for all Y, then X = 0

For every point we associate smoothly a symmetric non-degenerate bilinear form in $T_p(M)$.

The matrix of the components of the metric (g_{ij}) is symmetric and non-singular, so there exist an inverse $(g_{ij})^{-1} = (g^{ij})$.

The matrix of the components of the metric (g_{ij}) is symmetric and non-singular, so there exist an inverse $(g_{ij})^{-1} = (g^{ij})$.

Define the unique (2,0) tensor field g^{-1} whose components are (g^{ij}) :

$$g^{-1} = g^{ij} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^j}$$

イロト 不得 トイヨト イヨト 二日

The matrix of the components of the metric (g_{ij}) is symmetric and non-singular, so there exist an inverse $(g_{ij})^{-1} = (g^{ij})$.

Define the unique (2,0) tensor field g^{-1} whose components are (g^{ij}) :

$$g^{-1} = g^{ij} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^j}$$

Therefore we have an 'isomorphism' between the space of all vector fields and the space of all one-form fields: $\omega_a = g_{ab} X^b$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix (g_{ij})

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix (g_{ij})

A smooth n-dimensional manifold with a metric is a Riemannian manifold if s = n

$$g_{ij} = diag(+1,...,+1)$$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix (g_{ij})

A smooth n-dimensional manifold with a metric is a Riemannian manifold if s = n

$$\mathsf{g}_{ij} = \mathsf{diag}(+1,...,+1)$$

A smooth n-dimensional manifold with a metric is a pseudo Riemannian manifold if s < n

$$g_{ij} = diag(+1, ..., +1, -1, ..., -1)$$

イロッ イボッ イヨッ イヨッ 三日

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix (g_{ij})

A smooth n-dimensional manifold with a metric is a Riemannian manifold if s = n

$$g_{ij} = diag(+1,...,+1)$$

A smooth n-dimensional manifold with a metric is a pseudo Riemannian manifold if s < n

$$g_{ij} = diag(+1,...,+1,-1,...,-1)$$

A metric on a n-dimensional smooth manifold is a Lorentz metric if s = n - 2

$$g_{ij} = diag(+1, ..., +1, -1)$$

イロン 不良 とくほう イヨン 二日

With a metric we can define a unique torsion-free connection with the compatibility condition:

 $\nabla_X g = 0$ for all vector fields X

3

(日) (周) (三) (三)

With a metric we can define a unique torsion-free connection with the compatibility condition:

 $\nabla_X g = 0$ for all vector fields X

We can show that the connection coefficients satisfies:

$$\Gamma^{q}_{\ ij} = \frac{1}{2}g^{qm}(\frac{\partial}{\partial x^{i}}g_{mj} + \frac{\partial}{\partial x^{j}}g_{mi} - \frac{\partial}{\partial x^{m}}g_{ij})$$

- 4 同 6 4 日 6 4 日 6

• If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (U, x) where the g_{ij} are constants in U

- If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (U, x) where the g_{ij} are constants in U
- Considering the index symmetries in the Riemann tensor, there exist $\frac{1}{12}n^2(n^2-1)$ independent components

- 4 同 6 4 日 6 4 日 6

- If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (*U*, *x*) where the *g*_{*ij*} are constants in *U*
- Considering the index symmetries in the Riemann tensor, there exist $\frac{1}{12}n^2(n^2-1)$ independent components
- The scalar curvature is defined as $R = g^{ab}R_{ab}$

If $\gamma : \mathbb{R} \to M$ is a curve on a smooth manifold with a metric g, the length of the path between two points $\gamma(t_0) = p$, $\gamma(t) = q$ is:

$$L = \int_{t_0}^t \sqrt{|g(v_\gamma, v_\gamma)|} dt$$

(日) (周) (三) (三)

If $\gamma : \mathbb{R} \to M$ is a curve on a smooth manifold with a metric g, the length of the path between two points $\gamma(t_0) = p$, $\gamma(t) = q$ is:

$$L = \int_{t_0}^t \sqrt{|g(v_{\gamma}, v_{\gamma})|} dt$$

A geodesic is a stationary curve of the L functional.

イロト 不得下 イヨト イヨト

Minkowski spacetime is a four dimensional smooth manifold M with a Lorentz metric η such that everywhere:

$$\eta = -dt \otimes dt + dx \otimes dx + dy \otimes dy + dz \otimes dz$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Minkowski spacetime is a four dimensional smooth manifold M with a Lorentz metric η such that everywhere:

$$\eta = -dt \otimes dt + dx \otimes dx + dy \otimes dy + dz \otimes dz$$

i.e, it takes the diagonal form

$$\eta_{ij} = diag(-1, 1, 1, 1)$$

in a unique chart that covers M.

Causal structure

For every vector field X in spacetime we have:

$$\eta(X,X) = \eta_{ij} dx^i(X) dx^j(X) = \eta_{ij} dx^i dx^j$$

< 🗇 🕨

Causal structure

For every vector field X in spacetime we have:

$$\eta(X,X) = \eta_{ij} dx^i(X) dx^j(X) = \eta_{ij} dx^i dx^j$$

For every vector $X \in T_p(M)$

- If $\eta(X, X) > 0$, X is said to be spacelike
- If $\eta(X, X) < 0$, X is said to be timelike
- If $\eta(X, X) = 0$, X is null

過 ト イヨ ト イヨト

Causal structure

For every vector field X in spacetime we have:

$$\eta(X,X) = \eta_{ij} dx^i(X) dx^j(X) = \eta_{ij} dx^i dx^j$$

For every vector $X \in T_p(M)$

- If $\eta(X, X) > 0$, X is said to be spacelike
- If $\eta(X, X) < 0$, X is said to be timelike
- If $\eta(X, X) = 0$, X is null

The proper time is *represented* by

$$d\tau^2 = -\eta_{ij} dx^i dx^j$$

過 ト イヨ ト イヨト

The metric components $\eta_{ij} = diag(-1, 1, 1, 1)$ are constants everywhere and the connections coefficients $\Gamma^{q}_{ij} = 0$ vanishes...

The metric components $\eta_{ij} = diag(-1, 1, 1, 1)$ are constants everywhere and the connections coefficients $\Gamma^{q}_{ij} = 0$ vanishes...

so does the riemannian curvature tensor $R^a_{bcd} = 0$

イロト 不得下 イヨト イヨト

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$\delta L = \int \frac{1}{2\sqrt{g(v_{\gamma}, v_{\gamma})}} \delta g(v_{\gamma}, v_{\gamma}) dt = 0$$

3

(日) (同) (三) (三)

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$\delta L = \int \frac{1}{2\sqrt{g(v_{\gamma}, v_{\gamma})}} \delta g(v_{\gamma}, v_{\gamma}) dt = 0$$

Choose the proper time as affine parameter, so $g(\textit{v}_{\gamma},\textit{v}_{\gamma}) = -1$

$$\delta L = \frac{1}{2} \int \delta g(v_{\gamma}, v_{\gamma}) d\tau = \delta \left(\frac{1}{2} \int g(v_{\gamma}, v_{\gamma}) d\tau \right)$$

Thomas Felipe Campos Bastos (IFUSP)

(日) (周) (三) (三)

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$\delta L = \int \frac{1}{2\sqrt{g(v_{\gamma}, v_{\gamma})}} \delta g(v_{\gamma}, v_{\gamma}) dt = 0$$

Choose the proper time as affine parameter, so $g(\textit{v}_{\gamma},\textit{v}_{\gamma}) = -1$

$$\delta L = \frac{1}{2} \int \delta g(v_{\gamma}, v_{\gamma}) d\tau = \delta \left(\frac{1}{2} \int g(v_{\gamma}, v_{\gamma}) d\tau \right)$$

The problem reduces to $\mathcal{L} = \frac{1}{2}g(v_{\gamma}, v_{\gamma}) = \frac{1}{2}g_{ij}\dot{\gamma}^i\dot{\gamma}^j$

Using the Euler-Lagrange equations...

$$\frac{d^2\gamma^q}{d\tau^2} + \frac{1}{2}g^{qm}(\frac{\partial}{\partial x^i}g_{mj} + \frac{\partial}{\partial x^j}g_{mi} - \frac{\partial}{\partial x^m}g_{ij})\frac{d\gamma^j}{d\tau}\frac{d\gamma^k}{d\tau} = 0$$

Aha!

$$\frac{d^2\gamma^q}{d\tau^2} + \Gamma^q{}_{ij}\frac{d\gamma^j}{d\tau}\frac{d\gamma^k}{d\tau} = 0$$

A null geodesic cannot be parametrized by the proper time.

3

- - E

Spacetime is a four dimensional connected smooth manifold with a Lorentz metric

3

(日) (同) (三) (三)

Spacetime is a four dimensional connected smooth manifold with a Lorentz metric

The relation of the curvature with the energy-momentum tensor T_{ab} is given by the Einstein's Field Equations

$$R_{ab} - \frac{1}{2}g_{ab}R = 8\pi GT_{ab}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

That's all folks !

Thomas Felipe Campos Bastos (IFUSP)

3

イロト イヨト イヨト イヨト