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A little bit of mechanics

Nature makes the action

S =

∫ tb

ta

Ldt

as small as possible
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A little bit of mechanics

This happens when L = T − V satisfies

d

dt

(
∂L

∂ẋ i

)
=

∂L

∂x i

These are the so called Euler-Lagrange equations
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For a free particle it’s just a line

L =
m

2
(ẋ2 + ẏ2)

d

dt

(
dx i

dt

)
= 0

Figure: Motion of a free particle
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What about surfaces?

Our best friend forever: S2 = {x ∈ R3; ‖x‖= R}

v2 = R2θ̇2 + R2φ̇2 sin2 θ

Which gives us ...
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What about surfaces?

θ̈ − sin θ cos θ φ̇2 = 0

φ̈+ 2 cot θ θ̇ φ̇ = 0

Very complicated... let’s use symmetry !
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What about surfaces?

Particle in the equator with constant angular velocity is a solution

Symmetry says that every
Great Circle is a solution !

Figure: Great circle in purple S2
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Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e,
geodesics. This is a general property

For a free particle, where x1 = x and x2 = y :

ẍ1 = 0

ẍ2 = 0

For a free particle in S2, where x1 = θ and x2 = φ:

ẍ1 + (− sin x1 cos x1) ẋ2ẋ2 = 0

ẍ2 + (2 cot x1) ẋ2ẋ2 = 0
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ẍ2 + (2 cot x1) ẋ2ẋ2 = 0

Thomas Felipe Campos Bastos (IFUSP) The Geometry of Spacetime March 28, 2018 8 / 68



Geodesic equation for a general surface embedded in R3:

ẍ i +
∑
j ,k

Γi
jk ẋ

j ẋk = 0

Information about the curvature must be encoded in the numbers Γi
jk ,

called the Christoffel symbols

From now on we use the Einstein convention, so the equation above
becomes:

ẍ i + Γi
jk ẋ

j ẋk = 0

Thomas Felipe Campos Bastos (IFUSP) The Geometry of Spacetime March 28, 2018 9 / 68



Geodesic equation for a general surface embedded in R3:
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How to bend spacetime

The principle of equivalence together with the Newton’s Second Law
implies that

ẍ i = (−∇Φ)i := f i

with ∂i f
i = −4πGρ

Mixing time and space xµ = (t, x , y , x)

ẍ0 = 0

ẍ i − f i ẋ0ẋ0 = 0

Geodesic equations in a curved spacetime!
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ẍ0 = 0
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But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of
Physics

Figure: Spacetime may be something crazy

Thomas Felipe Campos Bastos (IFUSP) The Geometry of Spacetime March 28, 2018 11 / 68



But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of
Physics

Figure: Spacetime may be something crazy

Thomas Felipe Campos Bastos (IFUSP) The Geometry of Spacetime March 28, 2018 11 / 68



Topological Spaces

Let M 6= ∅. A set τ ⊂ P(M) is called a topology if

∅,M ∈ τ ;

{Aλ}λ∈Λ ⊂ τ =⇒
⋃
λ∈Λ

Aλ ∈ τ ;

{Ak}nk=1 ⊂ τ =⇒
n⋂

k=1

Ak ∈ τ

The pair (M, τ) is called a topological space. Elements of τ are called
open sets.
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Continuous maps, Homeomorphism

A map f : (X , τX )→ (Y , τY ) is said to be continuous if:

for every V ∈ τY , f −1(V ) ∈ τX

A bijection X
ϕ←→Y is said to be a homeomorphism if it’s continuous both

ways.
We say that X and Y are homeomorphic if there’s a homeomorphism
between them.
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Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where
U ∈ τ and x : U → Rn is a homeomorphism.

We call U a local coordinate neighborhood and x a coordinate system.

Figure: I’ve seen this before...
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Smooth Atlas

A smooth atlas A in a topological space (M, τ) is a collection of charts
A = {(Uα, xα)} such that:

It covers the whole space, i.e, M =
⋃
α Uα

If (U, x) and (V , y) are any two charts that overlaps, i.e, U ∩ V 6= ∅
then the transition map

y ◦ x−1 : x(U ∩ V ) ⊂ Rn → y(U ∩ V ) ⊂ Rn

is C∞
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Figure: The transition map ψ ◦ ϕ−1 must have derivatives of all orders
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Smooth Manifolds

A topological space (M, τ) together with a smooth atlas A is called a
smooth manifold.
We also require that the topological space is Hausdorff for good properties
to hold.
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Examples of Manifolds

M = Rn with the standard topology and atlas given by just one chart
(U = Rn, x = id) is trivially a smooth manifold.

M = S2 is a manifold
Every surface in R3 is a manifold
Klein Bottle, torus, Mobius Strip ...
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Functions And Curves

Now transfer the notion of smoothness in Rn to smoothness in M:

We say that a function f : M → R is of class C∞ if
f ◦ x−1 : x(M) ⊂ Rn → R is of class C∞ for all charts.

We say that a curve γ : I ⊂ R→ M is of class C∞ if
x ◦ γ : I ⊂ R→ x(M) ⊂ Rn is of class C∞ for all charts.

Everything is well-defined if the atlas is smooth!!
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If (U, x) and (V , y) are any two charts that overlaps and γ is a smooth
curve:

y ◦ γ = (y ◦ x−1) ◦ (x ◦ γ)

The transition map y ◦ x−1 is smooth, thus smoothness in γ is well-defined.
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Tangent Vector
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Tangent vector

Let p ∈ M and γ : I ⊂ R→ M a smooth curve where γ(t0) = p.

The tangent vector to p, Xp, is the operator which maps smooth functions
f : M → R to number:

Xp : f 7→ d(f ◦ γ)

dt
(t0)
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Tangent Space

The set Tp(M) of all tangent vectors to a point p ∈ M is a vector space.

Linear algebra tells us that every vector space has a basis.

Let’s find a useful one:
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Chart-induced basis

Let p ∈ M and (U, x) a chart such that p ∈ U, then for every
Xp ∈ Tp(M):

Xp(f ) =
d(f ◦ γ)

dt
=
∂(f ◦ x−1)

∂xk
d(x ◦ γ)k

dt

for some curve γ

Xp(f ) =
d(x ◦ γ)k

dt

∂(f ◦ x−1)

∂xk

Remark: x(p) = (x1(p), ..., xn(p))
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Some definitions

We call (x ◦ γ)k := γk the k-th component of the curve.

Define the operator ∂
∂xk

as the one that acts on a function like

∂

∂xk
(f ) =

∂(f ◦ x−1)

∂xk

In fact, the operator ∂
∂xk

is an element of Tp(M).

The set of vectors { ∂
∂x1 , ...,

∂
∂xn } are linearly independent!
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Chart-induced basis

This definitions give us a nice expression:

Xp(f ) =
d(x ◦ γ)k

dt

∂(f ◦ x−1)

∂xk
= γ̇k

∂

∂xk
(f )

which is equivalent to say

Xp = γ̇k
∂

∂xk

Thus { ∂
∂x1 , ...,

∂
∂xn } is a basis for Tp(M).
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One-forms

A one-form is a linear map ω : Tp(M)→ R, i.e, for all vectors
X ,Y ∈ Tp(M) and α ∈ R

ω(X + αY ) = ω(X ) + αω(Y )

With the point sum (ω1 + αω2)(X ) = ω1(X ) + α.ω2(X )
the set of all one-forms T ∗p (M) in p ∈ M is a vector space.
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Differential

The differential of function f is a one-form df : Tp(M)→ R such that

df (X ) = X (f ) for all vectors X ∈ Tp(M)

The homeomorphism of a chart x gives rise to the differentials of the
coordinate components dxk
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Chart-induced basis, again...

Let p ∈ M and (U, x) a chart such that p ∈ U. The set of forms
{dx1, ..., dxn} is a basis of T ∗p (M):

Is linearly independent αidx
i = 0 ⇐⇒ αi = 0

Generates T ∗p (M), i.e, ω = ω( ∂
∂xk

)dxk

The bases { ∂
∂xk
} and {dx i} are said to be dual:

dx i
(

∂

∂xk

)
=

∂

∂xk
(x i ) = δij
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Gradient of a Function

In particular, the differential of a function f ∈ C∞(M) can be written as

df =
∂

∂xk
(f )dxk

Thus we generalize the notion of gradient!
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Tensors

Let p ∈ M, a tensor of type (r , s) at p is a multilinear map

T : T ∗p × ...× T ∗p × Tp × ...× Tp = (T ∗p )r × (Tp)s → R

Which means that T is linear in each argument:
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For every vectors Xk ,Xl ∈ Tp and scalars a, b ∈ R:

T (ω1, ..., ωr ,X1, ..., a.Xk + b.Xl , ...,Xs) =

a.T (ω1, ..., ωr ,X1, ...,Xk , ...,Xs) + b.T (ω1, ..., ωr ,X1, ...,Xl , ...,Xs)

And the same for one-forms.
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Tensor Operations

We can sum tensors and multiply by scalars:

(T + αT ′)(ω1, ..., ωr ,X1, ...,Xs) =

T (ω1, ..., ωr ,X1, ...,Xs) + αT ′(ω1, ..., ωr ,X1, ...,Xs)

This give the structure of a vector space to the set T r
s (p) of all (r , s)

tensors defined in T ∗p × ...× T ∗p × Tp × ...× Tp
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We can multiply a tensor by another tensor: If R ∈ T r
s and S ∈ T k

l are
tensors, the tensor product R ⊗ S ∈ T r+k

s+l is defined as

(R ⊗ S)(ω1, ..., ωr , ...ωr+k ,X1, ...,Xs , ...Xs+l) =

R(ω1, ..., ωr ,X1, ...,Xs) · S(ωr+1, ..., ωr+k ,Xs+1, ...,Xs+l)

Thomas Felipe Campos Bastos (IFUSP) The Geometry of Spacetime March 28, 2018 34 / 68



Chart-induced basis, again...

If { ∂
∂x i
}, {dx i} are dual basis of Tp and T ∗p , then the set:

{ ∂

∂xa1
⊗ ...⊗ ∂

∂xar
⊗ dxb1 ⊗ ...⊗ dxbs}

is a basis of T r
s (p), where every index ai , bj ∈ {1, ..., n}

There will be nr+s basis tensors
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Thus every (r , s) tensor can be written as:

T = T a1...ar
b1...bs

∂
∂xa1 ⊗ ...⊗ ∂

∂xar ⊗ dxb1 ⊗ ...⊗ dxbs

If it wasn’t for Einstein’s convention:

T =
∑

a1
...
∑

ar

∑
b1
...
∑

bs
T a1...ar

b1...bs
∂

∂xa1 ⊗ ...⊗ ∂
∂xar ⊗dxb1 ⊗ ...⊗dxbs
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Figure: Einstein dies of ligma
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(skew) Symmetric part of a Tensor

Let T be a (2, 0) tensor, the symmetric part of T a1a2 is the (r , s) tensor
defined as:

T (a1a2) =
1

2!
(T a1a2 + T a2a1)

Similarly, the skew symmetric tensor T [a1a2] is

T [a1a2] =
1

2!
(T a1a2 − T a2a1)
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(skew) Symmetric part of a Tensor

The symmetric part of T a1a2...ar
b1b2...bs

in the ar indices is the (r , s) tensor

T
(a1a2...ar )

b1b2...bs
defined as:

T
(a1...ar )

b1...bs
=

1

r !
(sum of all permutations of the a˙r indices)

Similarly, the skew symmetric tensor T
[a1a2...ar ]

b1b2...bs
is

T
[a1...ar ]

b1...bs
=

1

r !
(alternating sum of all permutations of the a˙r indices)
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Contraction

Let T a1a2
b1b2

be a tensor of type (2, 2), the contraction of T in the first
two indices is a (1, 1) tensor defined as:

C (T )a2
b2

= T a1a2
a1b2

The generalization for a (r , s) tensor is immediate
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Tensor field

A vector field is an association X : M →
⋃

p Tp(M) in a way that if p ∈ M
then X (p) = Xp ∈ Tp(M)

A tensor field of type (r , s) is defined in a similar manner, where
T : M 3 p 7→ T (p) ∈ T r

s (p)
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Connection

Let X be a vector field and T a (r , s) tensor field defined in a smooth
manifold M. A connection ∇ is a map:

∇ : (X ,T ) 7→ ∇XT

where ∇XT is a (r , s) tensor field, called the covariant derivative.

It must satisfies the following properties:
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Axioms for ∇

If f ∈ C∞(M), then ∇X f = X (f )

If α ∈ R and Y ,Z are tensor fields, then
∇X (αY + Z ) = α∇XY +∇XZ

(Leibniz’s rule) ∇X (T ⊗ R) = ∇XT ⊗ R + T ⊗∇XR

If f ∈ C∞(M) and X ,Y are vector fields, then
∇fX+YT = f∇XT +∇YT
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Connection coefficients

For a vector field Y , we can calculate the covariant derivative as follows:

∇XY = ∇X i ∂

∂xi

(
Y k ∂

∂xk

)

= X i∇ ∂

∂xi
Y k ⊗ ∂

∂xk
+ X iY k ⊗∇ ∂

∂xi

∂

∂xk

X i ∂

∂x i
(Y k)

∂

∂xk
+ X iY k∇ ∂

∂xi

∂

∂xk

we don’t know the precise form of ∇ ∂

∂xi

∂
∂xk

, but we know that it’s a vector

(field)!
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Connection coefficients

So we can expand ∇ ∂

∂xi

∂
∂xk

in a basis:

∇ ∂

∂xi

∂

∂xk
= Γq

ki

∂

∂xq

Therefore

∇XY =

(
X i ∂

∂x i
(Y q) + X iY kΓq

ki

)
∂

∂xq

The Γq
ki are called the connection coefficients.
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They are the same for a one-form

With the same construction we can get, for one-forms ω:

∇Xω =

(
X i ∂

∂x i
(ωj)− X iωkΓk

ji

)
dx j

And for a general tensor field we apply the Leibniz rule many times using
the same construction to get to the general formula:

(∇XT )a1...ar
b1...bs

= X i ∂

∂x i
T a1...ar

b1...bs

+X kT j ...ar
b1...bs

Γa1
jk + all terms in the upper indices

−X iT a1...ar
k...bs

Γk
b1i − all terms in the lower indices
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Parallel Transport

Let γ : I ⊂ R→ M. The tangent vector field vγ is such that if p = γ(t)
for some t ∈ I , then vγ(p) = γ̇k(p) ∂

∂xk
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Parallel Transport

Let γ : I ⊂ R→ M and vγ be the tangent vector field defined as before. A
vector field X is said to be parallelly transported along γ if

∇vγX = 0
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Autoparallel curves

The curve that moves as straight as possible has its tangent vector field
parallelly transported along γ, therefore

∇vγvγ = 0

In components this is just

γ̇m
∂

∂xm
(γ̇q) + γ̇mγ̇nΓq

nm = 0

γ̈q + Γq
nmγ̇

mγ̇n = 0
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γ̈q + Γq
nmγ̇

mγ̇n = 0
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Parallel transport

Figure: Parallel transport in flat space Figure: Parallel transport in S2
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Curvature

The non-commutative behavior of
the covariant derivative measures the
curvature:

[∇ ∂
∂xµ

,∇ ∂
∂xν

] 6= 0
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Let V be a vector field, then(
[∇ ∂

∂xµ
,∇ ∂

∂xν
]V
)ρ

=

(
∂

∂xµ
Γρνσ −

∂

∂xν
Γµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

)
V σ − 2Γλ[µν](∇ ∂

∂xλ
V )

If Γλ[µν] = 0 the curvature is contained in the proportional term , the
Riemann tensor:

Rρσµν =
∂

∂xµ
Γρνσ −

∂

∂xν
Γµσ + ΓρµλΓλνσ − ΓρνλΓλµσ
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Torsion tensor and Riemann tensor

The torsion of a connection ∇ is the (1, 2) tensor field

T (ω,X ,Y ) = ω(∇XY −∇YX − [X ,Y ])

where [X ,Y ] is the commutator vector field such that
[X ,Y ]f = X (Y (f ))− Y (X (f )) for every f ∈ C∞(M)

If T = 0 the connection is said to be torsion-free

T a
bc = 2.Γa

[bc] = 0 =⇒ Γa
bc = Γa

cb
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Torsion tensor and Riemann tensor

The Riemann tensor is the (1, 3) tensor field

R(ω,Z ,X ,Y ) = ω(∇Y∇XZ −∇X∇YZ −∇[X ,Y ]Z )

In components of a chart:

Ra
bcd =

∂

∂xc
(Γa

db)− ∂

∂xd
(Γa

cb) + Γa
cf Γf

db − Γa
df Γf

cb

The contraction of the Riemann tensor gives the Ricci tensor:

Rab = Rc
acb
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Useful Identities

The Riemann tensor is skew symmetric in the last indices:

Ra
b(cd) = 0

Is symmetric in the lower indices:

Ra
[bcd ] = 0

Later we’ll see the geometrical significance of the Riemann tensor
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Metric

Let M a smooth manifold. A metric g = gijdx
i ⊗ dx j is a tensor field of

type (0, 2) such that:

g(X ,Y ) = g(Y ,X ) for all vector fields X ,Y

If there exist a vector field X such that g(X ,Y ) = 0 for all Y , then
X = 0

For every point we associate smoothly a symmetric non-degenerate bilinear
form in Tp(M).
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”Raising” indices, Signature

The matrix of the components of the metric (gij) is symmetric and
non-singular, so there exist an inverse (gij)

−1 = (g ij).

Define the unique (2, 0) tensor field g−1 whose components are (g ij) :

g−1 = g ij ∂

∂x i
⊗ ∂

∂x j

Therefore we have an ’isomorphism’ between the space of all vector fields
and the space of all one-form fields: ωa = gabX

b
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”Raising” indices, Signature

The signature s of a metric is the number of positive eigenvalues minus
the number of negative eigenvalues of the matrix (gij)

A smooth n-dimensional manifold with a metric is a Riemannian manifold
if s = n

gij = diag(+1, ....,+1)

A smooth n-dimensional manifold with a metric is a pseudo Riemannian
manifold if s < n

gij = diag(+1, ....,+1,−1, ...,−1)

A metric on a n-dimensional smooth manifold is a Lorentz metric if
s = n − 2

gij = diag(+1, ....,+1,−1)
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Connection from the metric

With a metric we can define a unique torsion-free connection with the
compatibility condition:

∇Xg = 0 for all vector fields X

We can show that the connection coefficients satisfies:

Γq
ij =

1

2
gqm(

∂

∂x i
gmj +

∂

∂x j
gmi −

∂

∂xm
gij )
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Facts about the Riemann Tensor

If the Riemann tensor vanishes in a simply-connected region, we can
construct a chart (U, x) where the gij are constants in U

Considering the index symmetries in the Riemann tensor, there exist
1

12n
2(n2 − 1) independent components

The scalar curvature is defined as R = gabRab
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Geodesics

If γ : R→ M is a curve on a smooth manifold with a metric g , the length
of the path between two points γ(t0) = p, γ(t) = q is:

L =

∫ t

t0

√
|g(vγ , vγ)|dt

A geodesic is a stationary curve of the L functional.
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Some thoughts on Minkowski Spacetime

Minkowski spacetime is a four dimensional smooth manifold M with a
Lorentz metric η such that everywhere:

η = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz

i.e, it takes the diagonal form

ηij = diag(−1, 1, 1, 1)

in a unique chart that covers M.
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Causal structure

For every vector field X in spacetime we have:

η(X ,X ) = ηijdx
i (X )dx j(X ) = ηijdx

idx j

For every vector X ∈ Tp(M)

If η(X ,X ) > 0, X is said to be spacelike

If η(X ,X ) < 0, X is said to be timelike

If η(X ,X ) = 0, X is null

The proper time is represented by

dτ2 = −ηijdx idx j
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It has no curvature

The metric components ηij = diag(−1, 1, 1, 1) are constants everywhere
and the connections coefficients Γq

ij = 0 vanishes...

so does the riemannian curvature tensor Ra
bcd = 0
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Geodesics

In a chart (U, x) that cover the path, the geodesic equation satisfies:

δL =

∫
1

2
√
g(vγ , vγ)

δg(vγ , vγ)dt = 0

Choose the proper time as affine parameter, so g(vγ , vγ) = −1

δL =
1

2

∫
δg(vγ , vγ)dτ = δ

(
1

2

∫
g(vγ , vγ)dτ

)

The problem reduces to L = 1
2g(vγ , vγ) = 1

2gij γ̇
i γ̇j
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Geodesics

Using the Euler-Lagrange equations...

d2γq

dτ2
+

1

2
gqm(

∂

∂x i
gmj +

∂

∂x j
gmi −

∂

∂xm
gij )

dγj

dτ

dγk

dτ
= 0

Aha!

d2γq

dτ2
+ Γq

ij

dγj

dτ

dγk

dτ
= 0

A null geodesic cannot be parametrized by the proper time.
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Spacetime

Spacetime is a four dimensional connected smooth manifold with a
Lorentz metric

The relation of the curvature with the energy-momentum tensor Tab is
given by the Einstein’s Field Equations

Rab −
1

2
gabR = 8πGTab
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That’s all folks !
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