The Geometry of Spacetime

Thomas Felipe Campos Bastos

March 28, 2018

A little bit of mechanics

Nature makes the action

$$
S=\int_{t_{a}}^{t_{b}} L \mathrm{~d} t
$$ as small as possible

A little bit of mechanics

This happens when $L=T-V$ satisfies

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right)=\frac{\partial L}{\partial x^{i}}
$$

These are the so called Euler-Lagrange equations

For a free particle it's just a line

$$
\begin{gathered}
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
\frac{d}{d t}\left(\frac{d x^{i}}{d t}\right)=0
\end{gathered}
$$

For a free particle it's just a line

$$
\begin{gathered}
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
\frac{d}{d t}\left(\frac{d x^{i}}{d t}\right)=0
\end{gathered}
$$

Figure: Motion of a free particle

What about surfaces?

What about surfaces?

Our best friend forever: $\mathcal{S}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3} ;\|\mathbf{x}\|=R\right\}$

What about surfaces?

Our best friend forever: $\mathcal{S}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3} ;\|\mathbf{x}\|=R\right\}$

$$
v^{2}=R^{2} \dot{\theta}^{2}+R^{2} \dot{\phi}^{2} \sin ^{2} \theta
$$

What about surfaces?

Our best friend forever: $\mathcal{S}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3} ;\|\mathbf{x}\|=R\right\}$

$$
v^{2}=R^{2} \dot{\theta}^{2}+R^{2} \dot{\phi}^{2} \sin ^{2} \theta
$$

Which gives us ...

What about surfaces?

$$
\begin{aligned}
& \ddot{\theta}-\sin \theta \cos \theta \dot{\phi}^{2}=0 \\
& \ddot{\phi}+2 \cot \theta \dot{\theta} \dot{\phi}=0
\end{aligned}
$$

Very complicated... let's use symmetry !

What about surfaces?

Particle in the equator with constant angular velocity is a solution

What about surfaces?

Particle in the equator with constant angular velocity is a solution

Symmetry says that every Great Circle is a solution!

Figure: Great circle in purple \mathcal{S}^{2}

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

For a free particle, where $x^{1}=x$ and $x^{2}=y$:

$$
\begin{aligned}
& \ddot{x}^{1}=0 \\
& \ddot{x}^{2}=0
\end{aligned}
$$

Free particles moves in geodesics

In both cases the free particle takes the path of minimal length, i.e, geodesics. This is a general property

For a free particle, where $x^{1}=x$ and $x^{2}=y$:

$$
\begin{aligned}
& \ddot{x}^{1}=0 \\
& \ddot{x}^{2}=0
\end{aligned}
$$

For a free particle in \mathcal{S}^{2}, where $x^{1}=\theta$ and $x^{2}=\phi$:

$$
\begin{aligned}
& \ddot{x}^{1}+\left(-\sin x^{1} \cos x^{1}\right) \dot{x}^{2} \dot{x}^{2}=0 \\
& \ddot{x}^{2}+\left(2 \cot x^{1}\right) \dot{x}^{2} \dot{x}^{2}=0
\end{aligned}
$$

Geodesic equation for a general surface embedded in \mathbb{R}^{3} :

$$
\ddot{x}^{i}+\sum_{j, k} \Gamma^{i}{ }_{j k} \dot{x}^{j} \dot{x}^{k}=0
$$

Information about the curvature must be encoded in the numbers $\Gamma^{i}{ }_{j k}$, called the Christoffel symbols

Geodesic equation for a general surface embedded in \mathbb{R}^{3} :

$$
\ddot{x}^{i}+\sum_{j, k} \Gamma^{i}{ }_{j k} \dot{x}^{j} \dot{x}^{k}=0
$$

Information about the curvature must be encoded in the numbers $\Gamma^{i}{ }_{j k}$, called the Christoffel symbols

From now on we use the Einstein convention, so the equation above becomes:

$$
\ddot{x}^{i}+\Gamma^{i}{ }_{j k} \dot{x}^{j} \dot{x}^{k}=0
$$

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$
\ddot{x}^{i}=(-\nabla \Phi)^{i}:=f^{i}
$$

with $\partial_{i} f^{i}=-4 \pi G \rho$

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$
\ddot{x}^{i}=(-\nabla \Phi)^{i}:=f^{i}
$$

with $\partial_{i} f^{i}=-4 \pi G \rho$
Mixing time and space $x^{\mu}=(t, x, y, x)$

$$
\begin{gathered}
\ddot{x}^{0}=0 \\
\ddot{x}^{i}-f^{i} \dot{x}^{0} \dot{x}^{0}=0
\end{gathered}
$$

How to bend spacetime

The principle of equivalence together with the Newton's Second Law implies that

$$
\ddot{x}^{i}=(-\nabla \Phi)^{i}:=f^{i}
$$

with $\partial_{i} f^{i}=-4 \pi G \rho$
Mixing time and space $x^{\mu}=(t, x, y, x)$

$$
\begin{gathered}
\ddot{x}^{0}=0 \\
\ddot{x}^{i}-f^{i} \dot{x}^{0} \dot{x}^{0}=0
\end{gathered}
$$

Geodesic equations in a curved spacetime!

But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of Physics

But why manifolds?

Neither spacetime itself require a coordinate system, nor the laws of Physics

Figure: Spacetime may be something crazy

Topological Spaces

Topological Spaces

Let $M \neq \emptyset$. A set $\tau \subset \mathcal{P}(M)$ is called a topology if

Topological Spaces

Let $M \neq \emptyset$. A set $\tau \subset \mathcal{P}(M)$ is called a topology if

- $\emptyset, M \in \tau$;

Topological Spaces

Let $M \neq \emptyset$. A set $\tau \subset \mathcal{P}(M)$ is called a topology if

- $\emptyset, M \in \tau$;
- $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \tau \Longrightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau$;

Topological Spaces

Let $M \neq \emptyset$. A set $\tau \subset \mathcal{P}(M)$ is called a topology if

- $\emptyset, M \in \tau$;
- $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \tau \Longrightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau$;
- $\left\{A_{k}\right\}_{k=1}^{n} \subset \tau \Longrightarrow \bigcap_{k=1}^{n} A_{k} \in \tau$

Topological Spaces

Let $M \neq \emptyset$. A set $\tau \subset \mathcal{P}(M)$ is called a topology if

- $\emptyset, M \in \tau$;
- $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda} \subset \tau \Longrightarrow \bigcup_{\lambda \in \Lambda} A_{\lambda} \in \tau$;
- $\left\{A_{k}\right\}_{k=1}^{n} \subset \tau \Longrightarrow \bigcap_{k=1}^{n} A_{k} \in \tau$

The pair (M, τ) is called a topological space. Elements of τ are called open sets.

Continuous maps, Homeomorphism

A map $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is said to be continuous if:

$$
\text { for every } V \in \tau_{Y}, f^{-1}(V) \in \tau_{X}
$$

Continuous maps, Homeomorphism

A map $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is said to be continuous if:

$$
\text { for every } V \in \tau_{Y}, f^{-1}(V) \in \tau_{X}
$$

A bijection $X \stackrel{\varphi}{\longleftrightarrow} Y$ is said to be a homeomorphism if it's continuous both ways.
We say that X and Y are homeomorphic if there's a homeomorphism between them.

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism.

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism.

We call U a local coordinate neighborhood and x a coordinate system.

Charts

Let (M, τ) be a topological space. A chart in M is a pair (U, x) where $U \in \tau$ and $x: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism.

We call U a local coordinate neighborhood and x a coordinate system.

Figure: I've seen this before...

Smooth Atlas

A smooth atlas \mathcal{A} in a topological space (M, τ) is a collection of charts $\mathcal{A}=\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ such that:

Smooth Atlas

A smooth atlas \mathcal{A} in a topological space (M, τ) is a collection of charts $\mathcal{A}=\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ such that:

- It covers the whole space, i.e, $M=\bigcup_{\alpha} U_{\alpha}$

Smooth Atlas

A smooth atlas \mathcal{A} in a topological space (M, τ) is a collection of charts $\mathcal{A}=\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ such that:

- It covers the whole space, i.e, $M=\bigcup_{\alpha} U_{\alpha}$
- If (U, x) and (V, y) are any two charts that overlaps, i.e, $U \cap V \neq \emptyset$ then the transition map

Smooth Atlas

A smooth atlas \mathcal{A} in a topological space (M, τ) is a collection of charts $\mathcal{A}=\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ such that:

- It covers the whole space, i.e, $M=\bigcup_{\alpha} U_{\alpha}$
- If (U, x) and (V, y) are any two charts that overlaps, i.e, $U \cap V \neq \emptyset$ then the transition map

$$
y \circ x^{-1}: x(U \cap V) \subset \mathbb{R}^{n} \rightarrow y(U \cap V) \subset \mathbb{R}^{n}
$$

is C^{∞}

Figure: The transition map $\psi \circ \varphi^{-1}$ must have derivatives of all orders

Smooth Manifolds

A topological space (M, τ) together with a smooth atlas \mathcal{A} is called a smooth manifold.
We also require that the topological space is Hausdorff for good properties to hold.

Examples of Manifolds

$M=\mathbb{R}^{n}$ with the standard topology and atlas given by just one chart ($U=\mathbb{R}^{n}, x=i d$) is trivially a smooth manifold.

Examples of Manifolds

$M=\mathbb{R}^{n}$ with the standard topology and atlas given by just one chart ($U=\mathbb{R}^{n}, x=i d$) is trivially a smooth manifold. $M=\mathcal{S}^{2}$ is a manifold

Examples of Manifolds

$M=\mathbb{R}^{n}$ with the standard topology and atlas given by just one chart ($U=\mathbb{R}^{n}, x=i d$) is trivially a smooth manifold.
$M=\mathcal{S}^{2}$ is a manifold
Every surface in R^{3} is a manifold

Examples of Manifolds

$M=\mathbb{R}^{n}$ with the standard topology and atlas given by just one chart ($U=\mathbb{R}^{n}, x=i d$) is trivially a smooth manifold.
$M=\mathcal{S}^{2}$ is a manifold
Every surface in R^{3} is a manifold
Klein Bottle, torus, Mobius Strip ...

Functions And Curves

Now transfer the notion of smoothness in \mathbb{R}^{n} to smoothness in M :

Functions And Curves

Now transfer the notion of smoothness in \mathbb{R}^{n} to smoothness in M :
We say that a function $f: M \rightarrow \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1}: x(M) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of class C^{∞} for all charts.

Functions And Curves

Now transfer the notion of smoothness in \mathbb{R}^{n} to smoothness in M :
We say that a function $f: M \rightarrow \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1}: x(M) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of class C^{∞} for all charts.

We say that a curve $\gamma: I \subset \mathbb{R} \rightarrow M$ is of class C^{∞} if $x \circ \gamma: I \subset \mathbb{R} \rightarrow x(M) \subset \mathbb{R}^{n}$ is of class C^{∞} for all charts.

Functions And Curves

Now transfer the notion of smoothness in \mathbb{R}^{n} to smoothness in M :
We say that a function $f: M \rightarrow \mathbb{R}$ is of class C^{∞} if $f \circ x^{-1}: x(M) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is of class C^{∞} for all charts.

We say that a curve $\gamma: I \subset \mathbb{R} \rightarrow M$ is of class C^{∞} if $x \circ \gamma: I \subset \mathbb{R} \rightarrow x(M) \subset \mathbb{R}^{n}$ is of class C^{∞} for all charts.
Everything is well-defined if the atlas is smooth!!

If (U, x) and (V, y) are any two charts that overlaps and γ is a smooth curve:

$$
y \circ \gamma=\left(y \circ x^{-1}\right) \circ(x \circ \gamma)
$$

If (U, x) and (V, y) are any two charts that overlaps and γ is a smooth curve:

$$
y \circ \gamma=\left(y \circ x^{-1}\right) \circ(x \circ \gamma)
$$

The transition map $y \circ x^{-1}$ is smooth, thus smoothness in γ is well-defined.

Tangent Vector

Tangent vector

Let $p \in M$ and $\gamma: I \subset \mathbb{R} \rightarrow M$ a smooth curve where $\gamma\left(t_{0}\right)=p$.

Tangent vector

Let $p \in M$ and $\gamma: I \subset \mathbb{R} \rightarrow M$ a smooth curve where $\gamma\left(t_{0}\right)=p$.
The tangent vector to p, X_{p}, is the operator which maps smooth functions $f: M \rightarrow \mathbb{R}$ to number:

$$
X_{p}: f \mapsto \frac{d(f \circ \gamma)}{d t}\left(t_{0}\right)
$$

Tangent Space

The set $T_{p}(M)$ of all tangent vectors to a point $p \in M$ is a vector space.

Tangent Space

The set $T_{p}(M)$ of all tangent vectors to a point $p \in M$ is a vector space. Linear algebra tells us that every vector space has a basis.

Tangent Space

The set $T_{p}(M)$ of all tangent vectors to a point $p \in M$ is a vector space. Linear algebra tells us that every vector space has a basis.

Let's find a useful one:

Chart-induced basis

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_{p} \in T_{p}(M)$:

Chart-induced basis

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_{p} \in T_{p}(M)$:

$$
X_{p}(f)=\frac{d(f \circ \gamma)}{d t}=\frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}} \frac{d(x \circ \gamma)^{k}}{d t}
$$

for some curve γ

Chart-induced basis

Let $p \in M$ and (U, x) a chart such that $p \in U$, then for every $X_{p} \in T_{p}(M)$:

$$
X_{p}(f)=\frac{d(f \circ \gamma)}{d t}=\frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}} \frac{d(x \circ \gamma)^{k}}{d t}
$$

for some curve γ

$$
X_{p}(f)=\frac{d(x \circ \gamma)^{k}}{d t} \frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}
$$

Remark: $x(p)=\left(x^{1}(p), \ldots, x^{n}(p)\right)$

Some definitions

We call $(x \circ \gamma)^{k}:=\gamma^{k}$ the k-th component of the curve.

Some definitions

We call $(x \circ \gamma)^{k}:=\gamma^{k}$ the k-th component of the curve.
Define the operator $\frac{\partial}{\partial x^{k}}$ as the one that acts on a function like

$$
\frac{\partial}{\partial x^{k}}(f)=\frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}
$$

Some definitions

We call $(x \circ \gamma)^{k}:=\gamma^{k}$ the k-th component of the curve.
Define the operator $\frac{\partial}{\partial x^{k}}$ as the one that acts on a function like

$$
\frac{\partial}{\partial x^{k}}(f)=\frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}
$$

In fact, the operator $\frac{\partial}{\partial x^{k}}$ is an element of $T_{p}(M)$.

Some definitions

We call $(x \circ \gamma)^{k}:=\gamma^{k}$ the k-th component of the curve.
Define the operator $\frac{\partial}{\partial x^{k}}$ as the one that acts on a function like

$$
\frac{\partial}{\partial x^{k}}(f)=\frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}
$$

In fact, the operator $\frac{\partial}{\partial x^{k}}$ is an element of $T_{p}(M)$.
The set of vectors $\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}$ are linearly independent!

Chart-induced basis

This definitions give us a nice expression:

$$
X_{p}(f)=\frac{d(x \circ \gamma)^{k}}{d t} \frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}=\dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)
$$

Chart-induced basis

This definitions give us a nice expression:

$$
X_{p}(f)=\frac{d(x \circ \gamma)^{k}}{d t} \frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}=\dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)
$$

which is equivalent to say

$$
X_{p}=\dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}
$$

Chart-induced basis

This definitions give us a nice expression:

$$
X_{p}(f)=\frac{d(x \circ \gamma)^{k}}{d t} \frac{\partial\left(f \circ x^{-1}\right)}{\partial x^{k}}=\dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}(f)
$$

which is equivalent to say

$$
X_{p}=\dot{\gamma}^{k} \frac{\partial}{\partial x^{k}}
$$

Thus $\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}$ is a basis for $T_{p}(M)$.

One-forms

One-forms

A one-form is a linear map $\omega: T_{p}(M) \rightarrow \mathbb{R}$, i.e, for all vectors $X, Y \in T_{p}(M)$ and $\alpha \in R$

$$
\omega(X+\alpha Y)=\omega(X)+\alpha \omega(Y)
$$

One-forms

A one-form is a linear map $\omega: T_{p}(M) \rightarrow \mathbb{R}$, i.e, for all vectors $X, Y \in T_{p}(M)$ and $\alpha \in R$

$$
\omega(X+\alpha Y)=\omega(X)+\alpha \omega(Y)
$$

With the point sum $\left(\omega^{1}+\alpha \omega^{2}\right)(X)=\omega^{1}(X)+\alpha \cdot \omega^{2}(X)$ the set of all one-forms $T_{p}^{*}(M)$ in $p \in M$ is a vector space.

Differential

The differential of function f is a one-form $d f: T_{p}(M) \rightarrow \mathbb{R}$ such that

$$
d f(X)=X(f) \text { for all vectors } X \in T_{p}(M)
$$

Differential

The differential of function f is a one-form $d f: T_{p}(M) \rightarrow \mathbb{R}$ such that

$$
d f(X)=X(f) \text { for all vectors } X \in T_{p}(M)
$$

The homeomorphism of a chart x gives rise to the differentials of the coordinate components $d x^{k}$

Chart-induced basis, again...

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\left\{d x^{1}, \ldots, d x^{n}\right\}$ is a basis of $T_{p}^{*}(M)$:

Chart-induced basis, again...

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\left\{d x^{1}, \ldots, d x^{n}\right\}$ is a basis of $T_{p}^{*}(M)$:

- Is linearly independent $\alpha_{i} d x^{i}=0 \Longleftrightarrow \alpha^{i}=0$

Chart-induced basis, again...

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\left\{d x^{1}, \ldots, d x^{n}\right\}$ is a basis of $T_{p}^{*}(M)$:

- Is linearly independent $\alpha_{i} d x^{i}=0 \Longleftrightarrow \alpha^{i}=0$
- Generates $T_{p}^{*}(M)$, i.e, $\omega=\omega\left(\frac{\partial}{\partial x^{k}}\right) d x^{k}$

Chart-induced basis, again...

Let $p \in M$ and (U, x) a chart such that $p \in U$. The set of forms $\left\{d x^{1}, \ldots, d x^{n}\right\}$ is a basis of $T_{p}^{*}(M)$:

- Is linearly independent $\alpha_{i} d x^{i}=0 \Longleftrightarrow \alpha^{i}=0$
- Generates $T_{p}^{*}(M)$, i.e, $\omega=\omega\left(\frac{\partial}{\partial x^{k}}\right) d x^{k}$

The bases $\left\{\frac{\partial}{\partial x^{k}}\right\}$ and $\left\{d x^{i}\right\}$ are said to be dual:

$$
d x^{i}\left(\frac{\partial}{\partial x^{k}}\right)=\frac{\partial}{\partial x^{k}}\left(x^{i}\right)=\delta_{j}^{i}
$$

Gradient of a Function

In particular, the differential of a function $f \in C^{\infty}(M)$ can be written as

$$
d f=\frac{\partial}{\partial x^{k}}(f) d x^{k}
$$

Gradient of a Function

In particular, the differential of a function $f \in C^{\infty}(M)$ can be written as

$$
d f=\frac{\partial}{\partial x^{k}}(f) d x^{k}
$$

Thus we generalize the notion of gradient!

Tensors

Tensors

Let $p \in M$, a tensor of type (r, s) at p is a multilinear map

$$
T: T_{p}^{*} \times \ldots \times T_{p}^{*} \times T_{p} \times \ldots \times T_{p}=\left(T_{p}^{*}\right)^{r} \times\left(T_{p}\right)^{s} \rightarrow \mathbb{R}
$$

Tensors

Let $p \in M$, a tensor of type (r, s) at p is a multilinear map

$$
T: T_{p}^{*} \times \ldots \times T_{p}^{*} \times T_{p} \times \ldots \times T_{p}=\left(T_{p}^{*}\right)^{r} \times\left(T_{p}\right)^{s} \rightarrow \mathbb{R}
$$

Which means that T is linear in each argument:

For every vectors $X_{k}, X_{l} \in T_{p}$ and scalars $a, b \in \mathbb{R}$:

$$
T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, a . X_{k}+b \cdot X_{l}, \ldots, X_{s}\right)=
$$

For every vectors $X_{k}, X_{l} \in T_{p}$ and scalars $a, b \in \mathbb{R}$:

$$
\begin{gathered}
T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, \text { a. } X_{k}+b . X_{l}, \ldots, X_{s}\right)= \\
\text { a. } T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{k}, \ldots, X_{s}\right)+\text { b. } T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{l}, \ldots, X_{s}\right)
\end{gathered}
$$

For every vectors $X_{k}, X_{I} \in T_{p}$ and scalars $a, b \in \mathbb{R}$:

$$
\begin{gathered}
T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, \text { a. } X_{k}+\text { b. } X_{l}, \ldots, X_{s}\right)= \\
\text { a. } T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{k}, \ldots, X_{s}\right)+\text { b. } T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{l}, \ldots, X_{s}\right)
\end{gathered}
$$

And the same for one-forms.

Tensor Operations

We can sum tensors and multiply by scalars:

$$
\begin{gathered}
\left(T+\alpha T^{\prime}\right)\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)= \\
T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)+\alpha T^{\prime}\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)
\end{gathered}
$$

Tensor Operations

We can sum tensors and multiply by scalars:

$$
\begin{gathered}
\left(T+\alpha T^{\prime}\right)\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)= \\
T\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)+\alpha T^{\prime}\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right)
\end{gathered}
$$

This give the structure of a vector space to the set $T_{s}^{r}(p)$ of all (r, s) tensors defined in $T_{p}^{*} \times \ldots \times T_{p}^{*} \times T_{p} \times \ldots \times T_{p}$

We can multiply a tensor by another tensor: If $R \in T_{s}^{r}$ and $S \in T_{l}^{k}$ are tensors, the tensor product $R \otimes S \in T_{s+l}^{r+k}$ is defined as

$$
\begin{gathered}
(R \otimes S)\left(\omega^{1}, \ldots, \omega^{r}, \ldots \omega^{r+k}, X_{1}, \ldots, X_{s}, \ldots X_{s+l}\right)= \\
R\left(\omega^{1}, \ldots, \omega^{r}, X_{1}, \ldots, X_{s}\right) \cdot S\left(\omega^{r+1}, \ldots, \omega^{r+k}, X_{s+1}, \ldots, X_{s+l}\right)
\end{gathered}
$$

Chart-induced basis, again...

If $\left\{\frac{\partial}{\partial x^{i}}\right\},\left\{d x^{i}\right\}$ are dual basis of T_{p} and T_{p}^{*}, then the set:

$$
\left\{\frac{\partial}{\partial x^{a_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{a_{r}}} \otimes d x^{b_{1}} \otimes \ldots \otimes d x^{b_{s}}\right\}
$$

is a basis of $T_{s}^{r}(p)$, where every index $a_{i}, b_{j} \in\{1, \ldots, n\}$

Chart-induced basis, again...

If $\left\{\frac{\partial}{\partial x^{i}}\right\},\left\{d x^{i}\right\}$ are dual basis of T_{p} and T_{p}^{*}, then the set:

$$
\left\{\frac{\partial}{\partial x^{a_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{a_{r}}} \otimes d x^{b_{1}} \otimes \ldots \otimes d x^{b_{s}}\right\}
$$

is a basis of $T_{s}^{r}(p)$, where every index $a_{i}, b_{j} \in\{1, \ldots, n\}$
There will be n^{r+s} basis tensors

Thus every (r, s) tensor can be written as:

$$
T=T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}} \frac{\partial}{\partial x^{a_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{a r}} \otimes d x^{b_{1}} \otimes \ldots \otimes d x^{b_{s}}
$$

Thus every (r, s) tensor can be written as:
$T=T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}} \frac{\partial}{\partial x^{a_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{a r}} \otimes d x^{b_{1}} \otimes \ldots \otimes d x^{b_{s}}$
If it wasn't for Einstein's convention:
$T=\sum_{a_{1}} \ldots \sum_{a_{r}} \sum_{b_{1}} \ldots \sum_{b_{s}} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a^{2}} \frac{\partial}{\partial x^{a_{1}}} \otimes \ldots \otimes \frac{\partial}{\partial x^{a r}} \otimes d x^{b_{1}} \otimes \ldots \otimes d x^{b_{s}}$

Figure: Einstein dies of ligma

(skew) Symmetric part of a Tensor

Let T be a $(2,0)$ tensor, the symmetric part of $T^{a_{1} a_{2}}$ is the (r, s) tensor defined as:

$$
T^{\left(a_{1} a_{2}\right)}=\frac{1}{2!}\left(T^{a_{1} a_{2}}+T^{a_{2} a_{1}}\right)
$$

(skew) Symmetric part of a Tensor

Let T be a $(2,0)$ tensor, the symmetric part of $T^{a_{1} a_{2}}$ is the (r, s) tensor defined as:

$$
T^{\left(a_{1} a_{2}\right)}=\frac{1}{2!}\left(T^{a_{1} a_{2}}+T^{a_{2} a_{1}}\right)
$$

Similarly, the skew symmetric tensor $T^{\left[a_{1} a_{2}\right]}$ is

$$
T^{\left[a_{1} a_{2}\right]}=\frac{1}{2!}\left(T^{a_{1} a_{2}}-T^{a_{2} a_{1}}\right)
$$

(skew) Symmetric part of a Tensor

The symmetric part of $T_{b_{1} b_{2} \ldots b_{s}}^{a_{1} a_{2} \ldots a_{r}}$ in the a_{r} indices is the (r, s) tensor $T^{\left(a_{1} a_{2} \ldots a_{r}\right)}{ }_{b_{1} b_{2} \ldots b_{s}}$ defined as:

$$
T_{b_{1} \ldots b_{s}}^{\left(a_{1} \ldots a^{\prime}\right)}=\frac{1}{r!} \text { (sum of all permutations of the a'r indices) }
$$

(skew) Symmetric part of a Tensor

The symmetric part of $T_{b_{1} b_{2} \ldots b_{s}}^{a_{1} a_{2} \ldots a_{r}}$ in the a_{r} indices is the (r, s) tensor $T^{\left(a_{1} a_{2} \ldots a_{r}\right)}{ }_{b_{1} b_{2} \ldots b_{s}}$ defined as:

$$
T_{b_{1} \ldots b_{s}}^{\left(a_{1} \ldots a^{\prime}\right)}=\frac{1}{r!} \text { (sum of all permutations of the } a^{\prime} r \text { indices) }
$$

Similarly, the skew symmetric tensor $T^{\left[a_{1} a_{2} \ldots a_{r}\right]}{ }_{b_{1} b_{2} \ldots b_{s}}$ is
$T^{\left[a_{1} \ldots a_{r}\right]}{ }_{b_{1} \ldots b_{s}}=\frac{1}{r!}$ (alternating sum of all permutations of the $a \cdot r$ indices)

Contraction

Let $T^{a_{1} a_{2}}{ }_{b_{1} b_{2}}$ be a tensor of type (2,2), the contraction of T in the first two indices is a $(1,1)$ tensor defined as:

$$
C(T)_{b_{2}}^{a_{2}}=T_{a_{1} b_{1} a_{2}}^{a_{2}}
$$

Contraction

Let $T^{a_{1} a_{2}} b_{1} b_{2}$ be a tensor of type (2,2), the contraction of T in the first two indices is a $(1,1)$ tensor defined as:

$$
C(T)_{b_{2}}^{a_{2}}=T_{a_{1} b_{1} a_{2}}^{a_{2}}
$$

The generalization for a (r, s) tensor is immediate

Tensor field

A vector field is an association $X: M \rightarrow \bigcup_{p} T_{p}(M)$ in a way that if $p \in M$ then $X(p)=X_{p} \in T_{p}(M)$

Tensor field

A vector field is an association $X: M \rightarrow \bigcup_{p} T_{p}(M)$ in a way that if $p \in M$ then $X(p)=X_{p} \in T_{p}(M)$

A tensor field of type (r, s) is defined in a similar manner, where $T: M \ni p \mapsto T(p) \in T_{s}^{r}(p)$

Connection

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

$$
\nabla:(X, T) \mapsto \nabla_{X} T
$$

Connection

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

$$
\nabla:(X, T) \mapsto \nabla_{X} T
$$

where $\nabla_{X} T$ is a (r, s) tensor field, called the covariant derivative.

Connection

Let X be a vector field and T a (r, s) tensor field defined in a smooth manifold M. A connection ∇ is a map:

$$
\nabla:(X, T) \mapsto \nabla_{X} T
$$

where $\nabla_{X} T$ is a (r, s) tensor field, called the covariant derivative.
It must satisfies the following properties:

Axioms for ∇

- If $f \in C^{\infty}(M)$, then $\nabla_{X} f=X(f)$

Axioms for ∇

- If $f \in C^{\infty}(M)$, then $\nabla_{X} f=X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_{X}(\alpha Y+Z)=\alpha \nabla_{X} Y+\nabla_{X} Z$

Axioms for ∇

- If $f \in C^{\infty}(M)$, then $\nabla_{X} f=X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_{X}(\alpha Y+Z)=\alpha \nabla_{X} Y+\nabla_{X} Z$
- (Leibniz's rule) $\nabla_{X}(T \otimes R)=\nabla_{X} T \otimes R+T \otimes \nabla_{X} R$

Axioms for ∇

- If $f \in C^{\infty}(M)$, then $\nabla_{X} f=X(f)$
- If $\alpha \in \mathbb{R}$ and Y, Z are tensor fields, then $\nabla_{X}(\alpha Y+Z)=\alpha \nabla_{X} Y+\nabla_{X} Z$
- (Leibniz's rule) $\nabla_{X}(T \otimes R)=\nabla_{X} T \otimes R+T \otimes \nabla_{X} R$
- If $f \in C^{\infty}(M)$ and X, Y are vector fields, then $\nabla_{f X+Y} T=f \nabla_{X} T+\nabla_{Y} T$

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$
\nabla_{X} Y=\nabla_{X^{i} \frac{\partial}{\partial x^{i}}}\left(Y^{k} \frac{\partial}{\partial x^{k}}\right)
$$

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$
\begin{gathered}
\nabla_{X} Y=\nabla_{X i \frac{\partial}{\partial x^{i}}}\left(Y^{k} \frac{\partial}{\partial x^{k}}\right) \\
=X^{i} \nabla_{\frac{\partial}{\partial x^{i}}} Y^{k} \otimes \frac{\partial}{\partial x^{k}}+X^{i} Y^{k} \otimes \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}
\end{gathered}
$$

Connection coefficients

For a vector field Y, we can calculate the covariant derivative as follows:

$$
\begin{gathered}
\nabla_{X} Y=\nabla_{X^{i} \frac{\partial}{\partial x^{i}}}\left(Y^{k} \frac{\partial}{\partial x^{k}}\right) \\
=X^{i} \nabla_{\frac{\partial}{\partial x^{i}}} Y^{k} \otimes \frac{\partial}{\partial x^{k}}+X^{i} Y^{k} \otimes \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}} \\
X^{i} \frac{\partial}{\partial x^{i}}\left(Y^{k}\right) \frac{\partial}{\partial x^{k}}+X^{i} Y^{k} \nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}
\end{gathered}
$$

we don't know the precise form of $\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}$, but we know that it's a vector (field)!

Connection coefficients

So we can expand $\nabla_{\frac{\partial}{\partial x^{\prime}}} \frac{\partial}{\partial x^{k}}$ in a basis:

$$
\nabla_{\frac{\partial}{\partial x^{\prime}}} \frac{\partial}{\partial x^{k}}=\Gamma_{k i}^{q} \frac{\partial}{\partial x^{q}}
$$

Connection coefficients

So we can expand $\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}$ in a basis:

$$
\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}=\Gamma_{k i}^{q} \frac{\partial}{\partial x^{q}}
$$

Therefore

$$
\nabla_{X} Y=\left(X^{i} \frac{\partial}{\partial x^{i}}\left(Y^{q}\right)+X^{i} Y^{k} \Gamma_{k i}^{q}\right) \frac{\partial}{\partial x^{q}}
$$

Connection coefficients

So we can expand $\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}$ in a basis:

$$
\nabla_{\frac{\partial}{\partial x^{i}}} \frac{\partial}{\partial x^{k}}=\Gamma_{k i}^{q} \frac{\partial}{\partial x^{q}}
$$

Therefore

$$
\nabla_{X} Y=\left(X^{i} \frac{\partial}{\partial x^{i}}\left(Y^{q}\right)+X^{i} Y^{k} \Gamma_{k i}^{q}\right) \frac{\partial}{\partial x^{q}}
$$

The $\Gamma^{q}{ }_{k i}$ are called the connection coefficients.

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$
\nabla_{X \omega} \omega=\left(X^{i} \frac{\partial}{\partial x^{i}}\left(\omega_{j}\right)-X^{i} \omega_{k} \Gamma_{j i}^{k}\right) d x^{j}
$$

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$
\nabla_{x} \omega=\left(x^{i} \frac{\partial}{\partial x^{i}}\left(\omega_{j}\right)-X^{i} \omega_{k} \Gamma^{k}{ }_{j i}\right) d x^{j}
$$

And for a general tensor field we apply the Leibniz rule many times using the same construction to get to the general formula:

They are the same for a one-form

With the same construction we can get, for one-forms ω :

$$
\nabla_{X} \omega=\left(X^{i} \frac{\partial}{\partial x^{i}}\left(\omega_{j}\right)-X^{i} \omega_{k} \Gamma^{k}{ }_{j i}\right) d x^{j}
$$

And for a general tensor field we apply the Leibniz rule many times using the same construction to get to the general formula:

$$
\begin{gathered}
\left(\nabla_{X} T\right)^{a_{1} \ldots a_{r}}{ }_{b_{1} \ldots b_{s}}=X^{i} \frac{\partial}{\partial x^{i}} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}} \\
+X^{k} T^{j \ldots a_{r}}{ }_{b_{1} \ldots b_{s}} \Gamma^{a_{1}}{ }_{j k}+\text { all terms in the upper indices } \\
-X^{i} T^{a_{1} \ldots a_{r}}{ }_{k . . b_{s}} \Gamma^{k}{ }_{b_{1} i}-\text { all terms in the lower indices }
\end{gathered}
$$

Parallel Transport

Let $\gamma: I \subset \mathbb{R} \rightarrow M$. The tangent vector field v_{γ} is such that if $p=\gamma(t)$ for some $t \in I$, then $v_{\gamma}(p)=\dot{\gamma}^{k}(p) \frac{\partial}{\partial x^{k}}$

Parallel Transport

Let $\gamma: I \subset \mathbb{R} \rightarrow M$ and v_{γ} be the tangent vector field defined as before. A vector field X is said to be parallelly transported along γ if

$$
\nabla_{v_{\gamma}} X=0
$$

Parallel Transport

Let $\gamma: I \subset \mathbb{R} \rightarrow M$ and v_{γ} be the tangent vector field defined as before. A vector field X is said to be parallelly transported along γ if

$$
\nabla_{v_{\gamma}} X=0
$$

Autoparallel curves

The curve that moves as straight as possible has its tangent vector field parallelly transported along γ, therefore

$$
\nabla_{v_{\gamma}} v_{\gamma}=0
$$

Autoparallel curves

The curve that moves as straight as possible has its tangent vector field parallelly transported along γ, therefore

$$
\nabla_{v_{\gamma}} v_{\gamma}=0
$$

In components this is just

$$
\dot{\gamma}^{m} \frac{\partial}{\partial x^{m}}\left(\dot{\gamma}^{q}\right)+\dot{\gamma}^{m} \dot{\gamma}^{n} \Gamma^{q}{ }_{n m}=0
$$

Autoparallel curves

The curve that moves as straight as possible has its tangent vector field parallelly transported along γ, therefore

$$
\nabla_{v_{\gamma}} v_{\gamma}=0
$$

In components this is just

$$
\begin{gathered}
\dot{\gamma}^{m} \frac{\partial}{\partial x^{m}}\left(\dot{\gamma}^{q}\right)+\dot{\gamma}^{m} \dot{\gamma}^{n} \Gamma^{q}{ }_{n m}=0 \\
\ddot{\gamma}^{q}+\Gamma^{q}{ }_{n m} \dot{\gamma}^{m} \dot{\gamma}^{n}=0
\end{gathered}
$$

Parallel transport

Figure: Parallel transport in flat space

Figure: Parallel transport in \mathcal{S}^{2}

Curvature

Curvature

The non-commutative behavior of the covariant derivative measures the curvature:

$$
\left[\nabla_{\frac{\partial}{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}}\right] \neq 0
$$

Let V be a vector field, then

Let V be a vector field, then

$$
\begin{gathered}
\left(\left[\nabla_{\partial{ }_{\partial x^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\nu}}} V\right)^{\rho}=\right. \\
\left(\frac{\partial}{\partial x^{\mu}} \Gamma^{\rho}{ }_{\nu \sigma}-\frac{\partial}{\partial x^{\nu}} \Gamma_{\mu \sigma}+\Gamma^{\rho}{ }_{\mu \lambda} \lambda^{\lambda}{ }_{\nu \sigma}-\Gamma^{\rho}{ }_{\nu \lambda} \Gamma^{\lambda}{ }_{\mu \sigma}\right) V^{\sigma}-2 \Gamma^{\lambda}{ }_{[\mu \nu]}\left(\nabla_{\frac{\partial}{\partial x^{\lambda}}} V\right)
\end{gathered}
$$

Let V be a vector field, then

$$
\begin{gathered}
\left(\left[\nabla_{\frac{\partial}{\partial \alpha^{\mu}}}, \nabla_{\frac{\partial}{\partial x^{\top}}} V\right)^{\rho}=\right. \\
\left(\frac{\partial}{\partial x^{\mu}} \Gamma^{\rho}{ }_{\nu \sigma}-\frac{\partial}{\partial x^{\nu}} \Gamma_{\mu \sigma}+\Gamma^{\rho}{ }_{\mu \lambda} \lambda^{\lambda}{ }_{\nu \sigma}-\Gamma^{\rho}{ }_{\nu \lambda} \Gamma^{\lambda}{ }_{\mu \sigma}\right) V^{\sigma}-2 \Gamma^{\lambda}{ }_{[\mu \nu]}\left(\nabla_{\frac{\partial}{\partial x^{\prime}}} V\right)
\end{gathered}
$$

If $\Gamma_{[\mu \nu]}^{\lambda}=0$ the curvature is contained in the proportional term, the Riemann tensor:

$$
R_{\sigma \mu \nu}^{\rho}=\frac{\partial}{\partial x^{\mu}} \Gamma_{\nu \sigma}^{\rho}-\frac{\partial}{\partial x^{\nu}} \Gamma_{\mu \sigma}+\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \sigma}^{\lambda}-\Gamma_{\nu \lambda}^{\rho} \Gamma^{\lambda}{ }_{\mu \sigma}
$$

Torsion tensor and Riemann tensor

The torsion of a connection ∇ is the $(1,2)$ tensor field

$$
T(\omega, X, Y)=\omega\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)
$$

Torsion tensor and Riemann tensor

The torsion of a connection ∇ is the $(1,2)$ tensor field

$$
T(\omega, X, Y)=\omega\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)
$$

where $[X, Y$] is the commutator vector field such that $[X, Y] f=X(Y(f))-Y(X(f))$ for every $f \in C^{\infty}(M)$

Torsion tensor and Riemann tensor

The torsion of a connection ∇ is the $(1,2)$ tensor field

$$
T(\omega, X, Y)=\omega\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)
$$

where $[X, Y$] is the commutator vector field such that $[X, Y] f=X(Y(f))-Y(X(f))$ for every $f \in C^{\infty}(M)$

If $T=0$ the connection is said to be torsion-free

Torsion tensor and Riemann tensor

The torsion of a connection ∇ is the $(1,2)$ tensor field

$$
T(\omega, X, Y)=\omega\left(\nabla_{X} Y-\nabla_{Y} X-[X, Y]\right)
$$

where $[X, Y$] is the commutator vector field such that $[X, Y] f=X(Y(f))-Y(X(f))$ for every $f \in C^{\infty}(M)$

If $T=0$ the connection is said to be torsion-free

$$
T_{b c}^{a}=2 \cdot \Gamma_{[b c]}^{a}=0 \Longrightarrow \Gamma^{a}{ }_{b c}=\Gamma^{a}{ }_{c b}
$$

Torsion tensor and Riemann tensor

The Riemann tensor is the $(1,3)$ tensor field

$$
R(\omega, Z, X, Y)=\omega\left(\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z-\nabla_{[X, Y]} Z\right)
$$

Torsion tensor and Riemann tensor

The Riemann tensor is the $(1,3)$ tensor field

$$
R(\omega, Z, X, Y)=\omega\left(\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z-\nabla_{[X, Y]} Z\right)
$$

In components of a chart:

$$
R_{b c d}^{a}=\frac{\partial}{\partial x^{c}}\left(\Gamma_{d b}^{a}\right)-\frac{\partial}{\partial x^{d}}\left(\Gamma_{c b}^{a}\right)+\Gamma_{c f}^{a} \Gamma_{d b}^{f}-\Gamma_{d f}^{a} \Gamma_{c b}^{f}
$$

Torsion tensor and Riemann tensor

The Riemann tensor is the $(1,3)$ tensor field

$$
R(\omega, Z, X, Y)=\omega\left(\nabla_{Y} \nabla_{X} Z-\nabla_{X} \nabla_{Y} Z-\nabla_{[X, Y]} Z\right)
$$

In components of a chart:

$$
R_{b c d}^{a}=\frac{\partial}{\partial x^{c}}\left(\Gamma_{d b}^{a}\right)-\frac{\partial}{\partial x^{d}}\left(\Gamma_{c b}^{a}\right)+\Gamma_{c f}^{a} \Gamma_{d b}^{f}-\Gamma_{d f}^{a} \Gamma_{c b}^{f}
$$

The contraction of the Riemann tensor gives the Ricci tensor:

$$
R_{a b}=R_{a c b}^{c}
$$

Useful Identities

The Riemann tensor is skew symmetric in the last indices:

$$
R_{b(c d)}^{a}=0
$$

Useful Identities

The Riemann tensor is skew symmetric in the last indices:

$$
R_{b(c d)}^{a}=0
$$

Is symmetric in the lower indices:

$$
R_{[b c d]}^{a}=0
$$

Useful Identities

The Riemann tensor is skew symmetric in the last indices:

$$
R_{b(c d)}^{a}=0
$$

Is symmetric in the lower indices:

$$
R_{[b c d]}^{a}=0
$$

Later we'll see the geometrical significance of the Riemann tensor

Metric

Let M a smooth manifold. A metric $g=g_{i j} d x^{i} \otimes d x^{j}$ is a tensor field of type $(0,2)$ such that:

Metric

Let M a smooth manifold. A metric $g=g_{i j} d x^{i} \otimes d x^{j}$ is a tensor field of type $(0,2)$ such that:

- $g(X, Y)=g(Y, X)$ for all vector fields X, Y

Metric

Let M a smooth manifold. A metric $g=g_{i j} d x^{i} \otimes d x^{j}$ is a tensor field of type $(0,2)$ such that:

- $g(X, Y)=g(Y, X)$ for all vector fields X, Y
- If there exist a vector field X such that $g(X, Y)=0$ for all Y, then $X=0$

Metric

Let M a smooth manifold. A metric $g=g_{i j} d x^{i} \otimes d x^{j}$ is a tensor field of type $(0,2)$ such that:

- $g(X, Y)=g(Y, X)$ for all vector fields X, Y
- If there exist a vector field X such that $g(X, Y)=0$ for all Y, then $X=0$

For every point we associate smoothly a symmetric non-degenerate bilinear form in $T_{p}(M)$.

"Raising" indices, Signature

The matrix of the components of the metric $\left(g_{i j}\right)$ is symmetric and non-singular, so there exist an inverse $\left(g_{i j}\right)^{-1}=\left(g^{i j}\right)$.

"Raising" indices, Signature

The matrix of the components of the metric $\left(g_{i j}\right)$ is symmetric and non-singular, so there exist an inverse $\left(g_{i j}\right)^{-1}=\left(g^{i j}\right)$.

Define the unique $(2,0)$ tensor field g^{-1} whose components are $\left(g^{i j}\right)$:

$$
g^{-1}=g^{i j} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}}
$$

"Raising" indices, Signature

The matrix of the components of the metric $\left(g_{i j}\right)$ is symmetric and non-singular, so there exist an inverse $\left(g_{i j}\right)^{-1}=\left(g^{i j}\right)$.

Define the unique $(2,0)$ tensor field g^{-1} whose components are $\left(g^{i j}\right)$:

$$
g^{-1}=g^{i j} \frac{\partial}{\partial x^{i}} \otimes \frac{\partial}{\partial x^{j}}
$$

Therefore we have an 'isomorphism' between the space of all vector fields and the space of all one-form fields: $\omega_{a}=g_{a b} X^{b}$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix $\left(g_{i j}\right)$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix $\left(g_{i j}\right)$

A smooth n-dimensional manifold with a metric is a Riemannian manifold if $s=n$

$$
g_{i j}=\operatorname{diag}(+1, \ldots .,+1)
$$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix $\left(g_{i j}\right)$

A smooth n -dimensional manifold with a metric is a Riemannian manifold if $s=n$

$$
g_{i j}=\operatorname{diag}(+1, \ldots .,+1)
$$

A smooth n-dimensional manifold with a metric is a pseudo Riemannian manifold if $s<n$

$$
g_{i j}=\operatorname{diag}(+1, \ldots .,+1,-1, \ldots,-1)
$$

"Raising" indices, Signature

The signature s of a metric is the number of positive eigenvalues minus the number of negative eigenvalues of the matrix $\left(g_{i j}\right)$

A smooth n-dimensional manifold with a metric is a Riemannian manifold if $s=n$

$$
g_{i j}=\operatorname{diag}(+1, \ldots,+1)
$$

A smooth n-dimensional manifold with a metric is a pseudo Riemannian manifold if $s<n$

$$
g_{i j}=\operatorname{diag}(+1, \ldots .,+1,-1, \ldots,-1)
$$

A metric on a n -dimensional smooth manifold is a Lorentz metric if $s=n-2$

$$
g_{i j}=\operatorname{diag}(+1, \ldots .,+1,-1)
$$

Connection from the metric

With a metric we can define a unique torsion-free connection with the compatibility condition:

$$
\nabla_{x} g=0 \text { for all vector fields } X
$$

Connection from the metric

With a metric we can define a unique torsion-free connection with the compatibility condition:

$$
\nabla_{x} g=0 \text { for all vector fields } X
$$

We can show that the connection coefficients satisfies:

$$
\Gamma_{i j}^{q}=\frac{1}{2} g^{q m}\left(\frac{\partial}{\partial x^{i}} g_{m j}+\frac{\partial}{\partial x^{j}} g_{m i}-\frac{\partial}{\partial x^{m}} g_{i j}\right)
$$

Facts about the Riemann Tensor

- If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (U, x) where the $g_{i j}$ are constants in U

Facts about the Riemann Tensor

- If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (U, x) where the $g_{i j}$ are constants in U
- Considering the index symmetries in the Riemann tensor, there exist $\frac{1}{12} n^{2}\left(n^{2}-1\right)$ independent components

Facts about the Riemann Tensor

- If the Riemann tensor vanishes in a simply-connected region, we can construct a chart (U, x) where the $g_{i j}$ are constants in U
- Considering the index symmetries in the Riemann tensor, there exist $\frac{1}{12} n^{2}\left(n^{2}-1\right)$ independent components
- The scalar curvature is defined as $R=g^{a b} R_{a b}$

Geodesics

If $\gamma: \mathbb{R} \rightarrow M$ is a curve on a smooth manifold with a metric g, the length of the path between two points $\gamma\left(t_{0}\right)=p, \gamma(t)=q$ is:

$$
L=\int_{t_{0}}^{t} \sqrt{\left|g\left(v_{\gamma}, v_{\gamma}\right)\right|} d t
$$

Geodesics

If $\gamma: \mathbb{R} \rightarrow M$ is a curve on a smooth manifold with a metric g, the length of the path between two points $\gamma\left(t_{0}\right)=p, \gamma(t)=q$ is:

$$
L=\int_{t_{0}}^{t} \sqrt{\left|g\left(v_{\gamma}, v_{\gamma}\right)\right|} d t
$$

A geodesic is a stationary curve of the L functional.

Some thoughts on Minkowski Spacetime

Minkowski spacetime is a four dimensional smooth manifold M with a Lorentz metric η such that everywhere:

$$
\eta=-d t \otimes d t+d x \otimes d x+d y \otimes d y+d z \otimes d z
$$

Some thoughts on Minkowski Spacetime

Minkowski spacetime is a four dimensional smooth manifold M with a Lorentz metric η such that everywhere:

$$
\eta=-d t \otimes d t+d x \otimes d x+d y \otimes d y+d z \otimes d z
$$

i.e, it takes the diagonal form

$$
\eta_{i j}=\operatorname{diag}(-1,1,1,1)
$$

in a unique chart that covers M.

Causal structure

For every vector field X in spacetime we have:

$$
\eta(X, X)=\eta_{i j} d x^{i}(X) d x^{j}(X)=\eta_{i j} d x^{i} d x^{j}
$$

Causal structure

For every vector field X in spacetime we have:

$$
\eta(X, X)=\eta_{i j} d x^{i}(X) d x^{j}(X)=\eta_{i j} d x^{i} d x^{j}
$$

For every vector $X \in T_{p}(M)$

- If $\eta(X, X)>0, X$ is said to be spacelike
- If $\eta(X, X)<0, X$ is said to be timelike
- If $\eta(X, X)=0, X$ is null

Causal structure

For every vector field X in spacetime we have:

$$
\eta(X, X)=\eta_{i j} d x^{i}(X) d x^{j}(X)=\eta_{i j} d x^{i} d x^{j}
$$

For every vector $X \in T_{p}(M)$

- If $\eta(X, X)>0, X$ is said to be spacelike
- If $\eta(X, X)<0, X$ is said to be timelike
- If $\eta(X, X)=0, X$ is null

The proper time is represented by

$$
d \tau^{2}=-\eta_{i j} d x^{i} d x^{j}
$$

It has no curvature

The metric components $\eta_{i j}=\operatorname{diag}(-1,1,1,1)$ are constants everywhere and the connections coefficients $\Gamma^{q}{ }_{i j}=0$ vanishes...

It has no curvature

The metric components $\eta_{i j}=\operatorname{diag}(-1,1,1,1)$ are constants everywhere and the connections coefficients $\Gamma^{q}{ }_{i j}=0$ vanishes...
so does the riemannian curvature tensor $R_{b c d}^{a}=0$

Geodesics

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$
\delta L=\int \frac{1}{2 \sqrt{g\left(v_{\gamma}, v_{\gamma}\right)}} \delta g\left(v_{\gamma}, v_{\gamma}\right) d t=0
$$

Geodesics

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$
\delta L=\int \frac{1}{2 \sqrt{g\left(v_{\gamma}, v_{\gamma}\right)}} \delta g\left(v_{\gamma}, v_{\gamma}\right) d t=0
$$

Choose the proper time as affine parameter, so $g\left(v_{\gamma}, v_{\gamma}\right)=-1$

$$
\delta L=\frac{1}{2} \int \delta g\left(v_{\gamma}, v_{\gamma}\right) d \tau=\delta\left(\frac{1}{2} \int g\left(v_{\gamma}, v_{\gamma}\right) d \tau\right)
$$

Geodesics

In a chart (U, x) that cover the path, the geodesic equation satisfies:

$$
\delta L=\int \frac{1}{2 \sqrt{g\left(v_{\gamma}, v_{\gamma}\right)}} \delta g\left(v_{\gamma}, v_{\gamma}\right) d t=0
$$

Choose the proper time as affine parameter, so $g\left(v_{\gamma}, v_{\gamma}\right)=-1$

$$
\delta L=\frac{1}{2} \int \delta g\left(v_{\gamma}, v_{\gamma}\right) d \tau=\delta\left(\frac{1}{2} \int g\left(v_{\gamma}, v_{\gamma}\right) d \tau\right)
$$

The problem reduces to $\mathcal{L}=\frac{1}{2} g\left(v_{\gamma}, v_{\gamma}\right)=\frac{1}{2} g_{i j} \dot{\gamma}^{i} \dot{\gamma}^{j}$

Geodesics

Using the Euler-Lagrange equations...

$$
\frac{d^{2} \gamma^{q}}{d \tau^{2}}+\frac{1}{2} g^{q m}\left(\frac{\partial}{\partial x^{i}} g_{m j}+\frac{\partial}{\partial x^{j}} g_{m i}-\frac{\partial}{\partial x^{m}} g_{i j}\right) \frac{d \gamma^{j}}{d \tau} \frac{d \gamma^{k}}{d \tau}=0
$$

Aha!

$$
\frac{d^{2} \gamma^{q}}{d \tau^{2}}+\Gamma_{i j}^{q} \frac{d \gamma^{j}}{d \tau} \frac{d \gamma^{k}}{d \tau}=0
$$

A null geodesic cannot be parametrized by the proper time.

Spacetime

Spacetime is a four dimensional connected smooth manifold with a Lorentz metric

Spacetime

Spacetime is a four dimensional connected smooth manifold with a Lorentz metric

The relation of the curvature with the energy-momentum tensor $T_{a b}$ is given by the Einstein's Field Equations

$$
R_{a b}-\frac{1}{2} g_{a b} R=8 \pi G T_{a b}
$$

That's all folks !

