Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Topology (and Metrics) for the Young at Heart

Nicholas Funari Voltani

March 21, 2019

イロト 不得 トイヨト イヨト

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

$\mathbb{R} \qquad \qquad \sqrt{2} \qquad e \ \pi$

Figure: Our beloved \mathbb{R} line.

Motivation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Nicholas Funari Voltani

Motivation

 $\begin{array}{c} \text{Some} \\ \text{characteristics of} \\ \mathbb{R} \end{array}$

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Clos Sets Some examples Interior and Closure

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

 $x \in \mathbb{R}$

 $|x| \in \mathbb{R}_+$

Absolute Value

<ロ> <四> <四> <四> <三</td>

Nicholas Funari Voltani

Motivation

Some characteristics of \mathbb{R}

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Absolute Value & Distances

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

|x - y|: distance between $x, y \in \mathbb{R}$.

Nicholas Funari Voltani

Motivation

 $\begin{array}{c} \mathsf{Some} \\ \mathsf{characteristics} \ \mathsf{of} \\ \mathbb{R} \end{array}$

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Absolute Value & Distances

イロト 不得 トイヨト イヨト

3

Nicholas Funari Voltani

Motivation

 $\begin{array}{c} \mathsf{Some} \\ \mathsf{characteristics} \ \mathsf{of} \\ \mathbb{R} \end{array}$

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Absolute Value & Distances

•
$$|x-y| \neq 0 \iff x \neq y;$$

Nicholas Funari Voltani

Motivation

Some characteristics of \mathbb{R}

Metric Spaces

Some example

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Absolute Value & Distances

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- $|x-y| \neq 0 \iff x \neq y;$
- $|x z| \le |x y| + |y z|$ (Triangle Inequality);

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Absolute Value & Distances

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- $|x-y| \neq 0 \iff x \neq y;$
- $|x z| \le |x y| + |y z|$ (Triangle Inequality);
- $|x y| \ge 0$ (Positive distances);

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Absolute Value & Distances

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- $|x-y| \neq 0 \iff x \neq y;$
- $|x z| \le |x y| + |y z|$ (Triangle Inequality);
- $|x y| \ge 0$ (Positive distances);
- |x y| = |y x| (Commutativity)

Nicholas Funari Voltani

Motivation

 $\begin{array}{c} \text{Some} \\ \text{characteristics of} \\ \mathbb{R} \end{array}$

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

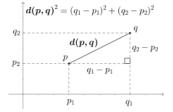
Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Distances in \mathbb{R}^n

(日)、

э



Euclidean distance in \mathbb{R}^2

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

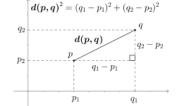
Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness



Distances in \mathbb{R}^n

Same idea for \mathbb{R}^{n} ! (Just the size of the *n*-rectangle's diagonal)

(日)、

э

Euclidean distance in \mathbb{R}^2

Nicholas Funari Voltani

Motivation

Some characteristics of \mathbb{R}

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

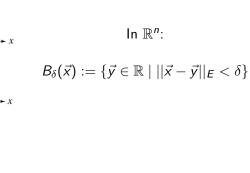
Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

In \mathbb{R} : a < x < b $x \in (a,b)$ - x Open interval $a \le x \le b$ $x \in [a,b]$ - x Closed interval

Open balls in \mathbb{R}^n



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Open sets in \mathbb{R}^n

イロト 不得 トイヨト イヨト

æ

$A \subset \mathbb{R}^n$ is open if:

$$\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$$

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Open sets in \mathbb{R}^n

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= nac

$A \subset \mathbb{R}^n$ is open if:

 $\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$ I.e., every point has an open ball around it entirely within A.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

$A \subset \mathbb{R}^n$ is open if:

 $\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$ I.e., every point has an open ball around it entirely within A.

It can be proven that

Open sets in \mathbb{R}^n

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

$A \subset \mathbb{R}^n$ is open if:

 $\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$ I.e., every point has an open ball around it entirely within A.

It can be proven that

• Arbitrary unions of open sets is an open set;

Open sets in \mathbb{R}^n

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

$A \subset \mathbb{R}^n$ is open if:

 $\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$ I.e., every point has an open ball around it entirely within A.

It can be proven that

- Arbitrary unions of open sets is an open set;
- Finite intersections of open sets is an open set;

Open sets in \mathbb{R}^n

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

$A \subset \mathbb{R}^n$ is open if:

 $\forall x \in A, \exists \delta_x > 0 \mid B_{\delta_x}(x) \subset A.$

I.e., every point has an open ball around it entirely within A.

It can be proven that

- Arbitrary unions of open sets is an open set;
- Finite intersections of open sets is an open set;
 - Even a countable intersection may fail to be open: $\bigcap_{n\in\mathbb{N}}(-1,\frac{1}{n})=(-1,0]$

Open sets in \mathbb{R}^n

Nicholas Funari Voltani

Motivation

Some characteristics o R

Let $M \neq \emptyset$ be a set.

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Metric Spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Metric Spaces

イロト 不得 トイヨト イヨト

3

Let $M \neq \emptyset$ be a set. Metric: $d: M \times M \rightarrow \mathbb{R}$ such that, for every $x, y, z \in M$,

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Definition: Metric Spaces

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let $M \neq \emptyset$ be a set. *Metric*: $d : M \times M \to \mathbb{R}$ such that, for every $x, y, z \in M$, • $d(x, y) = 0 \iff x = y$;

- $d(x,z) \le d(x,y) + d(y,z)$ (Triangle Inequality);
- *d*(*x*, *y*) ≥ 0 (Positivity);
- d(x, y) = d(y, x) (Commutativity)

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Definition: Metric Spaces

Let $M \neq \emptyset$ be a set. *Metric*: $d : M \times M \to \mathbb{R}$ such that, for every $x, y, z \in M$, • $d(x, y) = 0 \iff x = y$; • $d(x, z) \le d(x, y) + d(y, z)$ (Triangle Inequality);

•
$$d(x, y) = d(y, x)$$
 (Commutativity)

The pair (M, d) is called a *metric space* when d is a metric.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Some Classic Metric Spaces

イロト 不得 トイヨト イヨト

3

•
$$(\mathbb{R}, |.|)$$
 and (\mathbb{R}^n, d_E) , $d_E(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^n (x_i - y_i)^2}$

Applications

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Some Classic Metric Spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

•
$$(\mathbb{R}, |.|)$$
 and (\mathbb{R}^n, d_E) , $d_E(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^n (x_i - y_i)^2}$

•
$$M \neq \emptyset$$
;
 $d_t(x,y) = \begin{cases} 0, \text{if } x = y;\\ 1, \text{if } x \neq y \end{cases}$ (Trivial metric)

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Some Classic Metric Spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

•
$$(\mathbb{R}, |.|)$$
 and (\mathbb{R}^n, d_E) , $d_E(\vec{x}, \vec{y}) = \sqrt{\sum\limits_{k=1}^n (x_i - y_i)^2}$

•
$$M \neq \emptyset$$
;
 $d_t(x,y) = \begin{cases} 0, \text{if } x = y; \\ 1, \text{if } x \neq y \end{cases}$ (Trivial metric)

•
$$(\mathbb{R}^n, d_1)$$
, where $d_1(\vec{x}, \vec{y}) := \sum_{i=1}^n |x_i - y_i|$

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Some Classic Metric Spaces

•
$$(\mathbb{R}, |.|)$$
 and $(\mathbb{R}^n, d_E), \ d_E(\vec{x}, \vec{y}) = \sqrt{\sum_{k=1}^n (x_i - y_i)^2}$

•
$$M \neq \emptyset$$
;
 $d_t(x, y) = \begin{cases} 0, \text{if } x = y; \\ 1, \text{if } x \neq y \end{cases}$ (Trivial metric)

•
$$(\mathbb{R}^n, d_1)$$
, where $d_1(\vec{x}, \vec{y}) := \sum_{i=1}^n |x_i - y_i|$

• $(\mathcal{C}([a,b]),d_{\infty})$, where $d_{\infty}(f,g):=\sup_{x\in [a,b]}|f(x)-g(x)|$

-

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Pseudometrics: A case

Consider this snake-y boi, M.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

y •

Pseudometrics: A case

Let $x, y \in M$.

・ロト・(型・・ヨ・・ヨ・・(型・・)の(の)

Nicholas Funari Voltani

Motivation

Some characteristics R

Metric Spaces

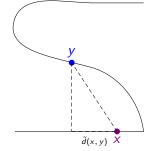
Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness



Pseudometrics: A case

Consider $\tilde{d}(x, y)$ to be the horizontal "distance" between x and y.

・ロット (雪) (日) (日) (日)

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

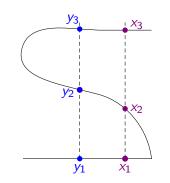
Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Connectedness Simply Connected Spaces Compactness



Pseudometrics: A case

Distinct points above each other have "distance" 0!

 $\therefore \tilde{d}$ isn't a metric!

But it satisfies the other properties...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

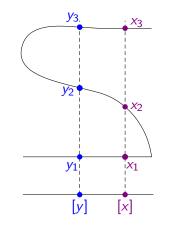
Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness



Creating Metrics from Pseudometrics

Let's identify points:

$$a \sim b \iff \tilde{d}(a, b) = 0$$

$$[x] = \{z \in M \mid \tilde{d}(x, z) = 0\}$$
$$= \{z \in M \mid z \sim x\}$$

イロト 不得 トイヨト イヨト

э

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

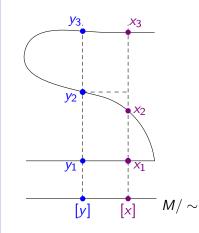
Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness



Creating Metrics from Pseudometrics

Define $d([x], [y]) := \tilde{d}(x, y)$. It is well-defined, since

$$egin{aligned} & ilde{d}(x_1,y_1) \leq ilde{d}(x_2,y_2) \ & ilde{d}(x_2,y_2) \leq ilde{d}(x_1,y_1) \ & \therefore ilde{d}(x_1,y_1) = ilde{d}(x_2,y_2) \end{aligned}$$

 $\therefore (M/\sim, d)$ is a metric space.

What is it good for?

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

What is it good for?

イロト 不得 トイヨト イヨト

э.

We usually talk about convergent sequences with a metric.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

We usually talk about convergent sequences with a metric. $(x_n)_{n \in \mathbb{N}}$ is convergent to $x \in M \iff$ $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \mid \forall n \geq N_{\epsilon}, d(x_n, x) < \epsilon.$

What is it good for?

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

What is it good for?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We usually talk about convergent sequences with a metric. $(x_n)_{n \in \mathbb{N}}$ is convergent to $x \in M \iff$ $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \mid \forall n \ge N_{\epsilon}, d(x_n, x) < \epsilon.$

We can talk about continuity of functions.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

We usually talk about convergent sequences with a metric. $(x_n)_{n \in \mathbb{N}}$ is convergent to $x \in M \iff$ $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \mid \forall n \ge N_{\epsilon}, d(x_n, x) < \epsilon.$

We can talk about continuity of functions. $f: (M, d_M) \rightarrow (N, d_N)$ is continuous in $x \in M$ if $\forall \epsilon > 0, \exists \delta > 0 \mid 0 < d_M(x, y) < \delta \implies d_N(f(x), f(y)) < \epsilon.$

What is it good for?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Applications

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

We usually talk about convergent sequences with a metric. $(x_n)_{n\in\mathbb{N}}$ is convergent to $x \in M \iff$ $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N} \mid \forall n \ge N_{\epsilon}, d(x_n, x) < \epsilon.$

What is it good for?

We can talk about continuity of functions. $f: (M, d_M) \rightarrow (N, d_N)$ is continuous in $x \in M$ if $\forall \epsilon > 0, \exists \delta > 0 \mid 0 < d_M(x, y) < \delta \implies d_N(f(x), f(y)) < \epsilon.$

There are naturally open balls of the form $B_{\delta}(x) = \{y \in M \mid d(x, y) < \delta\}.$ Definitions of open and closed sets is similar to that of \mathbb{R}^n .

Applications

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Topological Spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \0 < \0</p>

Nicholas Funari Voltani

Motivation

Some characteristics (R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Definition: Topological Spaces

イロト 不得 トイヨト イヨト

э.

Let $X \neq \emptyset$. A set $\tau \subset \mathcal{P}(X)$ is called a *topology* if

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Topological Spaces

イロト 不得 トイヨト イヨト

3

Let $X \neq \emptyset$. A set $\tau \subset \mathcal{P}(X)$ is called a *topology* if

• $\emptyset, X \in \tau;$

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Topological Spaces

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $X \neq \emptyset$. A set $\tau \subset \mathcal{P}(X)$ is called a *topology* if

- $\emptyset, X \in \tau;$
- $\{A_{\lambda}\}_{\lambda\in\Lambda}\subset\tau\implies\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau;$

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Definition: Topological Spaces

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $X \neq \emptyset$. A set $\tau \subset \mathcal{P}(X)$ is called a *topology* if

- $\emptyset, X \in \tau;$
- $\{A_{\lambda}\}_{\lambda\in\Lambda}\subset\tau\implies\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau;$

•
$$\{A_k\}_{k=1}^n \subset \tau \implies \bigcap_{k=1}^n A_k \in \tau$$

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Definition: Topological Spaces

Let $X \neq \emptyset$. A set $\tau \subset \mathcal{P}(X)$ is called a *topology* if

- $\emptyset, X \in \tau;$
- $\{A_{\lambda}\}_{\lambda\in\Lambda}\subset\tau\implies\bigcup_{\lambda\in\Lambda}A_{\lambda}\in\tau;$

•
$$\{A_k\}_{k=1}^n \subset \tau \implies \bigcap_{k=1}^n A_k \in \tau$$

The pair (X, τ) is called a *topological space* if τ is a topology for X.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Open and Closed Sets

イロト 不得 トイヨト イヨト

э.

Given (X, τ) topological space, $A \in \tau$ are called the *open sets* in X with respect to τ .

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Some example Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Open and Closed Sets

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given (X, τ) topological space, $A \in \tau$ are called the *open sets* in X with respect to τ .

Every $F \subset X \mid X \setminus F \in \tau$ are its *closed sets* (also w.r.t. τ). Let's call $\mathcal{F}(\tau)$ the collection of these closed sets.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Some example Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Given (X, τ) topological space, $A \in \tau$ are called the *open sets* in X with respect to τ .

Open and Closed Sets

Every $F \subset X \mid X \setminus F \in \tau$ are its *closed sets* (also w.r.t. τ). Let's call $\mathcal{F}(\tau)$ the collection of these closed sets.

Note that "open-ness" / "closed-ness" is always with respect to some topology (also obviously w.r.t the space X).

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Some examples

Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Some Classic Topological Spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \0 < \0</p>

• $(\mathbb{R}^n, \tau_{std})$ (surprise, surprise);

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets

Some examples

Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Some Classic Topological Spaces

- $(\mathbb{R}^n, \tau_{std})$ (surprise, surprise);
- Sierpinski space $\mathbb{S} = \{0, 1\}, \tau_{\mathbb{S}} = \{\emptyset, \{1\}, \{0, 1\}\}$ is a topological space!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Nicholas Funari Voltani

Motivation

Some characteristics of \mathbb{R}

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Some examples

Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Some Classic Topological Spaces

- $(\mathbb{R}^n, \tau_{std})$ (surprise, surprise);
- Sierpinski space $\mathbb{S} = \{0, 1\}, \tau_{\mathbb{S}} = \{\emptyset, \{1\}, \{0, 1\}\}$ is a topological space!
- Metric spaces (M, d), with their induced topology by the metric τ_d can be seen as topological spaces.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets

Interior and

Closure

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Interior and Closure of Sets

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Given (X, τ) topological space, and $Z \subset X$, then

Applications

Nicholas Funari Voltani

(

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Interior and Closure

Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Interior and Closure of Sets

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Given
$$(X, au)$$
 topological space, and $Z\subset X$, then

$$\mathring{Z} := \bigcup_{\substack{A \in \tau \\ A \subset Z}} A$$

is called Z's interior

Nicholas Funari Voltani

(

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Interior and Closure

Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Interior and Closure of Sets

Given
$$(X, au)$$
 topological space, and $Z\subset X$, then

$$\mathring{Z} := \bigcup_{\substack{A \in \tau \\ A \subset Z}} A$$

is called Z's interior

$$\overline{Z} := \bigcap_{\substack{F \in \mathcal{F}(\tau) \\ Z \subset F}} F$$

イロト 不得 トイヨト イヨト

3

is called Z's closure

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Interior and Closure

Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Interior and Closure of Sets

Given
$$(X, au)$$
 topological space, and $Z\subset X$, then

$$\mathring{Z} := \bigcup_{\substack{A \in \tau \\ A \subset Z}} A$$

is called Z's interior (inflating Z with inner open sets).

$$\overline{Z} := \bigcap_{\substack{F \in \mathcal{F}(\tau) \\ Z \subset F}} F$$

イロト 不得 トイヨト イヨト

3

is called Z's closure

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets

Interior and Closure

Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Interior and Closure of Sets

Given
$$(X, au)$$
 topological space, and $Z\subset X$, then

$$\mathring{Z} := \bigcup_{\substack{A \in \tau \\ A \subset Z}} A$$

is called Z's interior (inflating Z with inner open sets).

$$\overline{Z} := \bigcap_{\substack{F \in \mathcal{F}(\tau) \\ Z \subset F}} F$$

イロト 不得 トイヨト イヨト

3

is called Z's closure (enclosing Z with larger closed sets).

Applications

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure

Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Continuity in Topological Spaces

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A map $f: (X, \tau_X) \to (Y, \tau_Y)$ is said to be continuous if, for every $V \in \tau_Y$, $f^{-1}(V) \in \tau_X$. (In \mathbb{R}^n , it's equivalent to the $\epsilon - \delta$ definition.)

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Continuity in Topological Spaces

A map $f: (X, \tau_X) \to (Y, \tau_Y)$ is said to be continuous if, for every $V \in \tau_Y$, $f^{-1}(V) \in \tau_X$. (In \mathbb{R}^n , it's equivalent to the $\epsilon - \delta$ definition.)

A bijection $X \stackrel{\varphi}{\longleftrightarrow} Y$ is said to be a *homeomorphism* if it's continuous both ways.

We say $X \sim Y$ if there's a homeomorphism between them; they're said to be *topologically equivalent*.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Continuity in Topological Spaces

A map $f: (X, \tau_X) \to (Y, \tau_Y)$ is said to be continuous if, for every $V \in \tau_Y$, $f^{-1}(V) \in \tau_X$. (In \mathbb{R}^n , it's equivalent to the $\epsilon - \delta$ definition.)

A bijection $X \stackrel{\varphi}{\longleftrightarrow} Y$ is said to be a *homeomorphism* if it's continuous both ways.

We say $X \sim Y$ if there's a homeomorphism between them; they're said to be *topologically equivalent*.

Homeomorphisms are important objects in Topology, since they preserve many topological properties.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness

The Hausdorff property

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

The Hausdorff property

・ロト ・ 雪 ト ・ ヨ ト

æ

Given
$$(X, \tau)$$
 topological space, X is Hausdorff if
 $\forall x, y \in X, \exists U_x, U_y \in \tau \mid U_x \cap U_y = \emptyset, x \in U_x, y \in U_y$

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness

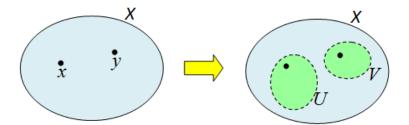
Applications

The Hausdorff property

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Given
$$(X, \tau)$$
 topological space, X is Hausdorff if
 $\forall x, y \in X, \exists U_x, U_y \in \tau \mid U_x \cap U_y = \emptyset, x \in U_x, y \in U_y$



Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

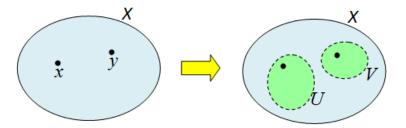
Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness The Hausdorff property

Given
$$(X, \tau)$$
 topological space, X is Hausdorff if
 $\forall x, y \in X, \exists U_x, U_y \in \tau \mid U_x \cap U_y = \emptyset, x \in U_x, y \in U_y$



Metric spaces are trivially Hausdorff (take open balls around x, y with radius $\frac{d(x,y)}{2}$).

Nicholas Funari Voltani

A non-Hausdorff space

Motivation

Some characteristics or R

Metric Spaces

Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Topology (and Metrics) for the Young at Heart	A non-Hausdorff space
Nicholas Funari Voltani	
Motivation	Consider the ${\mathbb R}$ line with two origins.
Some characteristics of R	P •
Metric Spaces	
Some examples	Ŏ
Pseudometrics	, i i i i i i i i i i i i i i i i i i i
Topological	
Spaces	
Open and Closed Sets	
Some examples	
Interior and Closure	
Continuity	
Topological	
Properties	
Hausdorff property	
Connectedness	
Path- Connectedness	
Simply	
Connected Spaces	
Compactness	
Applications	

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness Path-Connectedness Simply Connected Spaces Compactness

A non-Hausdorff space

イロト 不得 トイヨト イヨト

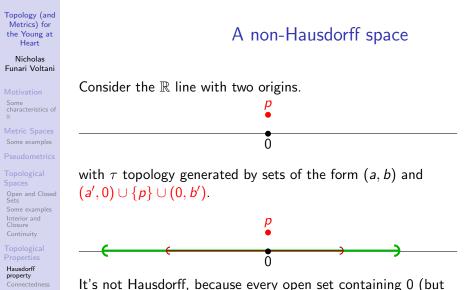
3

Consider the $\ensuremath{\mathbb{R}}$ line with two origins.

with τ topology generated by sets of the form (a, b) and $(a', 0) \cup \{p\} \cup (0, b')$.

р

0



not p) also intersects every open set containing p (but not 0).

Applications

Connected Spaces

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness

Path-Connectedness Simply Connected Spaces Compactness

Applications

▲ロト ▲圖 > ▲ ヨ > ▲ ヨ > ― ヨ = の < @

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness

Path-Connectedness Simply Connected Spaces Compactness

Applications

Connected Spaces

There are two equivalent definitions for disconnected (and connected) spaces:

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

Connectedness

Path-Connectedness Simply Connected Spaces

Applications

Connected Spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

There are two equivalent definitions for disconnected (and connected) spaces:

 (X, τ) is disconnected if $X = A \cup B$, where $A, B \in \tau$ and $A \cap B = \emptyset$. X is connected if it's not disconnected.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property

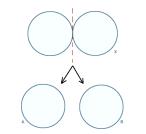
Connectedness

Path-Connectednes Simply Connected Spaces

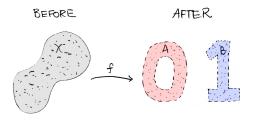
Applications

Connected Spaces

There are two equivalent definitions for disconnected (and connected) spaces:



 (X, τ) is disconnected if $X = A \cup B$, where $A, B \in \tau$ and $A \cap B = \emptyset$. X is connected if it's not disconnected.



 (X, τ) is disconnected if there is some continuous surjection $f: (X, \tau) \rightarrow (\{0, 1\}, \mathcal{P}(\{0, 1\})).$ X is connected if it's not disconnected, i.e., every continuous $f: X \rightarrow \{0, 1\}$ is constant.

(日) (同) (日) (日)

Path-Connectedness

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Desudement

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness

Path-Connectedness

Connected Spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness

Path-Connectedness

Simply Connected Spaces

compactness

Applications

Path-Connectedness

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 (X, τ) is *path-connected* if for every $x, y \in X$, there is a continuous path $\gamma : [0, 1] \to X, \gamma(0) = x, \gamma(1) = y$.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness

Path-Connectedness

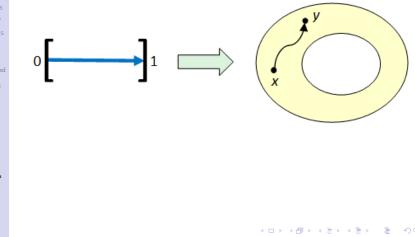
Simply Connected Spaces

Compactness

Applications

Path-Connectedness

 (X, τ) is *path-connected* if for every $x, y \in X$, there is a continuous path $\gamma : [0, 1] \to X, \gamma(0) = x, \gamma(1) = y$.



Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectednes

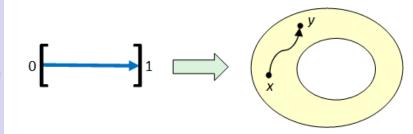
Path-Connectedness

Simply Connected Spaces Compactness

Applications

Path-Connectedness

 (X, τ) is *path-connected* if for every $x, y \in X$, there is a continuous path $\gamma : [0, 1] \to X, \gamma(0) = x, \gamma(1) = y$.



Note that it's a stronger condition than connectedness, since $disconnectedness \implies non-path-connectedness$ (there's a gap inbetween!).

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness

Path-Connectedness

Simply Connected Spaces

Applications

Examples of [Path-]Connected Spaces

イロト 不得 トイヨト イヨト

3

Intervals (a, b) ⊂ ℝ are path-connected (and, thus, connected);

Nicholas Funari Voltani

Motivation

Some characteristics of R

- Metric Spaces Some examples
- Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness

Path-Connectedness

Simply Connected Spaces

Applications

Examples of [Path-]Connected Spaces

- Intervals (a, b) ⊂ ℝ are path-connected (and, thus, connected);
- intervals of the form (a, b) ∪ (b, c) = (a, c) \ {b} are disconnected (and also fail to be path-connected).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

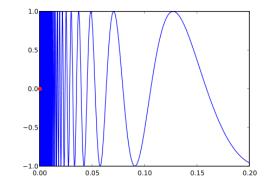
Hausdorff property Connectednes

Path-Connectedness

Simply Connected Spaces Compactness

Applications

Fish Out of Water: A Counterexample



The topologist's sine curve $(x, sin(\frac{1}{x})) \cup \{0, 0\}$ is connected, but is *not* path-connected.

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness

Simply Connected Spaces

Compactness

Applications

Simply Connected Spaces

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectednes

Simply Connected Spaces

Compactness

Applications

Simply Connected Spaces

A more usual concept in Calculus is that of simply connected spaces:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness

Simply Connected Spaces

Compactness

Applications

Simply Connected Spaces

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A more usual concept in Calculus is that of simply connected spaces:

For every $x, y \in X$, every continuous path connecting them can be deformed into any other continuous path connecting them.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectednes

Simply Connected Spaces

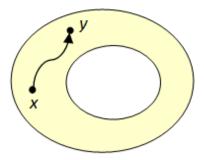
Compactness

Applications

Simply Connected Spaces

A more usual concept in Calculus is that of simply connected spaces:

For every $x, y \in X$, every continuous path connecting them can be deformed into any other continuous path connecting them. Spaces with "holes" fail to be simply connected.



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Compact Sets

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces

Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Compact Sets

An open cover of $K \subset X$ is a collection of open sets $\{A_{\lambda}\}_{\lambda \in \Lambda}$ such that $K \subset \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Compact Sets

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Topology (and Metrics) for the Young at Heart

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Compactness

Applications

An open cover of $K \subset X$ is a collection of open sets $\{A_{\lambda}\}_{\lambda \in \Lambda}$ such that $K \subset \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

A set $K \subset X$ is compact if, for every open cover $\{A_{\lambda}\}_{\lambda \in \Lambda} \subset \tau$, there is a finite open cover $\{A_k\}_{k=1}^n \subset \{A_{\lambda}\}_{\lambda \in \Lambda}$.

Compact Sets

Topology (and Metrics) for the Young at Heart

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

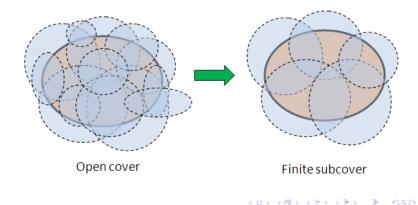
Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectednes Simply Connected Spaces Compactness An open cover of $K \subset X$ is a collection of open sets $\{A_{\lambda}\}_{\lambda \in \Lambda}$ such that $K \subset \bigcup_{\lambda \in \Lambda} A_{\lambda}$.

A set $K \subset X$ is compact if, for every open cover $\{A_{\lambda}\}_{\lambda \in \Lambda} \subset \tau$, there is a finite open cover $\{A_k\}_{k=1}^n \subset \{A_{\lambda}\}_{\lambda \in \Lambda}$.



Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness In \mathbb{R}^n , compact sets are closed and bounded (with respect to the Euclidean metric), of the form $\prod_{k=1}^n [a_k, b_k]$, and vice-versa (by Heine-Borel Theorem).

Compactness in \mathbb{R}^n

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

In \mathbb{R}^n , compact sets are closed and bounded (with respect to the Euclidean metric), of the form $\prod_{k=1}^n [a_k, b_k]$, and vice-versa (by Heine-Borel Theorem).

Compactness in \mathbb{R}^n

A classic theorem from Calculus:

Weierstrass' Theorem: A continuous function on a closed and bounded set (i.e., compact) $f : K \subset \mathbb{R}^n \to \mathbb{R}$ is bounded, i.e., attains its maximum and minimum in K.

Applications

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

A topological manifold (dimension *n*) is a triple (X, τ, A) ,

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

A topological manifold (dimension *n*) is a triple (X, τ, A) , τ topology,

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A topological manifold (dimension *n*) is a triple (X, τ, A) , τ topology, $A = \{(V_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ atlas.

Nicholas Funari Voltani

Motivation

Some characteristics or R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Ausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

A locally Euclidean space (dimension *n*) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A topological manifold (dimension *n*) is a triple (X, τ, A) , τ topology, $A = \{(V_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \Lambda}$ atlas.

($V_{lpha} \in au$ are locally Euclidean

open sets,

 $\varphi_{\alpha}: V_{\alpha} \to \mathbb{R}^n$ are their homeomorphisms).

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Ausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Manifolds and General Relativity

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

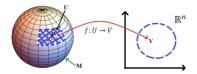
A topological manifold (dimension *n*) is a triple (X, τ, A) ,

au topology,

 $\mathcal{A} = \{(V_{lpha}, \varphi_{lpha})\}_{lpha \in \Lambda}$ atlas. $(V_{lpha} \in \tau$ are locally Euclidean

open sets,

 $\varphi_{\alpha}: V_{\alpha} \to \mathbb{R}^n$ are their homeomorphisms).



Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Manifolds and General Relativity

A locally Euclidean space (dimension n) is a topological space (X, τ) such that, for every $p \in X$, $\exists V_p \in \tau$ such that V_p is homeomorphic to an open disk in \mathbb{R}^n .

A topological manifold (dimension *n*) is a triple (X, τ, A) ,

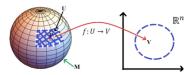
 τ topology,

$$\mathcal{A} = \{(V_lpha, arphi_lpha)\}_{lpha \in \mathbf{\Lambda}}$$
 atlas.
 $(V_lpha \in au$ are locally Euclidear

open sets,

 $\varphi_{\alpha}: V_{\alpha} \to \mathbb{R}^n$ are their homeomorphisms).

Spacetime in General Relativity is a 4-dimensional C^{∞} -differentiable manifold with a Lorentz metric.



Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Hilbert Spaces and Quantum Mechanics

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Given a vector space ${\mathcal H}$ with an inner product <,>, one can induce a norm by defining

 $||v|| := \sqrt{\langle v, v \rangle}$

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Hilbert Spaces and Quantum Mechanics

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Given a vector space ${\mathcal H}$ with an inner product <,>, one can induce a norm by defining

$$|\mathbf{v}|| := \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Given a norm, one can induce a metric:

$$d(u,v) := ||u-v||$$

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Hilbert Spaces and Quantum Mechanics

Given a vector space ${\mathcal H}$ with an inner product <,>, one can induce a norm by defining

 $||v|| := \sqrt{\langle v, v \rangle}$

Given a norm, one can induce a metric: d(u, v) := ||u - v||

A Hilbert Space is a vector space \mathcal{H} endowed with an inner product \langle , \rangle , such that it's a complete metric space (with its induced metric) (i.e., Cauchy sequences converge in \mathcal{H}).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nicholas Funari Voltani

Motivation

Some characteristics o R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Hilbert Spaces and Quantum Mechanics

Given a vector space ${\mathcal H}$ with an inner product <,>, one can induce a norm by defining

 $||v|| := \sqrt{\langle v, v \rangle}$

Given a norm, one can induce a metric: d(u, v) := ||u - v||

A Hilbert Space is a vector space \mathcal{H} endowed with an inner product \langle , \rangle , such that it's a complete metric space (with its induced metric) (i.e., Cauchy sequences converge in \mathcal{H}). Wavefunctions in Quantum Mechanics are unit vectors in $(\mathcal{H}, \langle , \rangle)$, and observables (momentum, position, etc.) are Hermitian operators $O : \mathcal{H} \to \mathcal{H}$.

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

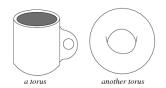
Topologica Spaces

Open and Closed Sets Some examples Interior and Closure Continuity

Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications



Obnoxious Math Jokes/Memes

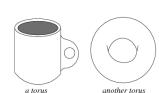
Nicholas Funari Voltani

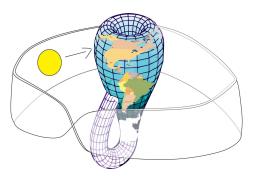
Open and Closed

Connectedness Spaces

Applications

Obnoxious Math Jokes/Memes





(日) (四) (王) (日) (日) (日)

Nicholas Funari Voltani

Motivation

Some characteristics of R

Metric Spaces Some examples

Pseudometrics

Topological Spaces

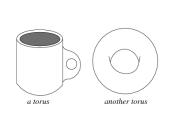
Open and Closed Sets Some examples Interior and Closure Continuity

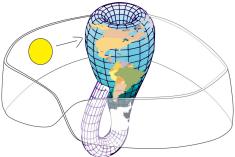
Topological Properties

Hausdorff property Connectedness Path-Connectedness Simply Connected Spaces Compactness

Applications

Obnoxious Math Jokes/Memes





Guess that's enough for today. Thank you for coming!