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Motivation

Figure: Our beloved R line.
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Absolute Value

x ∈ R

7−→
|.|

|x | ∈ R+
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Absolute Value & Distances

|x − y |: distance between x , y ∈ R.

Properties:

• |x − y | 6= 0 ⇐⇒ x 6= y ;

• |x − z | ≤ |x − y |+ |y − z | (Triangle Inequality);

• |x − y | ≥ 0 (Positive distances);

• |x − y | = |y − x | (Commutativity)
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Distances in Rn

Euclidean distance in R2

Same idea for Rn! (Just the
size of the n-rectangle’s
diagonal)
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Open balls in Rn

In R:

In Rn:

Bδ(~x) := {~y ∈ R | ||~x − ~y ||E < δ}
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Open sets in Rn

A ⊂ Rn is open if:

∀x ∈ A, ∃δx > 0 | Bδx (x) ⊂ A.

I.e., every point has an open ball around it entirely within A.

It can be proven that

• Arbitrary unions of open sets is an open set;

• Finite intersections of open sets is an open set;

• Even a countable intersection may fail to be open:⋂
n∈N

(−1, 1
n ) = (−1, 0]
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Definition: Metric Spaces

Let M 6= ∅ be a set.

Metric : d : M ×M → R such that, for every x , y , z ∈ M,

• d(x , y) = 0 ⇐⇒ x = y ;

• d(x , z) ≤ d(x , y) + d(y , z) (Triangle Inequality);

• d(x , y) ≥ 0 (Positivity);

• d(x , y) = d(y , x) (Commutativity)

The pair (M, d) is called a metric space when d is a metric.
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Some Classic Metric Spaces

• (R, |.|) and (Rn, dE ), dE (~x , ~y) =

√
n∑

k=1

(xi − yi )2

• M 6= ∅;

dt(x , y) =

{
0, if x = y ;

1, if x 6= y
(Trivial metric)

• (Rn, d1), where d1(~x , ~y) :=
n∑

i=1
|xi − yi |

• (C([a, b]), d∞), where d∞(f , g) := sup
x∈[a,b]

|f (x)− g(x)|
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Pseudometrics: A case

Consider this snake-y boi, M.
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Pseudometrics: A case

x

y

Let x , y ∈ M.
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Pseudometrics: A case

x

y

d̃(x, y)

Consider d̃(x , y) to be the
horizontal “distance” between
x and y .
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Pseudometrics: A case

x1

x2

x3

y1

y2

y3

Distinct points above each
other have “distance” 0!

∴ d̃ isn’t a metric!

But it satisfies the other
properties...
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Creating Metrics from
Pseudometrics

x1

x2

x3

y1

y2

y3

[x ][y ]

Let’s identify points:

a ∼ b ⇐⇒ d̃(a, b) = 0

[x ] = {z ∈ M | d̃(x , z) = 0}
= {z ∈ M | z ∼ x}
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Creating Metrics from
Pseudometrics

M/ ∼

x1

x2

x3

y1

y2

y3

[x ][y ]

Define d([x ], [y ]) := d̃(x , y). It
is well-defined, since

d̃(x1, y1) ≤ d̃(x2, y2)

d̃(x2, y2) ≤ d̃(x1, y1)

∴ d̃(x1, y1) = d̃(x2, y2)

∴ (M/ ∼, d) is a metric space.
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What is it good for?

We usually talk about convergent sequences with a metric.
(xn)n∈N is convergent to x ∈ M ⇐⇒
∀ε > 0,∃Nε ∈ N | ∀n ≥ Nε, d(xn, x) < ε.

We can talk about continuity of functions.
f : (M, dM)→ (N, dN) is continuous in x ∈ M if
∀ε > 0,∃δ > 0 | 0 < dM(x , y) < δ =⇒ dN(f (x), f (y)) < ε.

There are naturally open balls of the form
Bδ(x) = {y ∈ M | d(x , y) < δ}.
Definitions of open and closed sets is similar to that of Rn.
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∀ε > 0,∃δ > 0 | 0 < dM(x , y) < δ =⇒ dN(f (x), f (y)) < ε.

There are naturally open balls of the form
Bδ(x) = {y ∈ M | d(x , y) < δ}.
Definitions of open and closed sets is similar to that of Rn.
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Definition: Topological Spaces

Let X 6= ∅. A set τ ⊂ P(X ) is called a topology if

• ∅,X ∈ τ ;

• {Aλ}λ∈Λ ⊂ τ =⇒
⋃
λ∈Λ

Aλ ∈ τ ;

• {Ak}nk=1 ⊂ τ =⇒
n⋂

k=1

Ak ∈ τ

The pair (X , τ) is called a topological space if τ is a topology
for X .
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Open and Closed Sets

Given (X , τ) topological space, A ∈ τ are called the open sets
in X with respect to τ .

Every F ⊂ X | X \ F ∈ τ are its closed sets (also w.r.t. τ).
Let’s call F(τ) the collection of these closed sets.

Note that “open-ness”/“closed-ness” is always with respect to
some topology (also obviously w.r.t the space X ).
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Some Classic Topological Spaces

• (Rn, τstd) (surprise, surprise);

• Sierpinski space S = {0, 1}, τS = {∅, {1}, {0, 1}} is a
topological space!

• Metric spaces (M, d), with their induced topology by the
metric τd can be seen as topological spaces.
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Interior and Closure of Sets

Given (X , τ) topological space, and Z ⊂ X , then

Z̊ :=
⋃
A∈τ
A⊂Z

A

is called Z ’s interior (inflating Z with inner open sets).

Z :=
⋂

F∈F(τ)
Z⊂F

F

is called Z ’s closure (enclosing Z with larger closed sets).
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Continuity in Topological Spaces

A map f : (X , τX )→ (Y , τY ) is said to be continuous if,
for every V ∈ τY , f −1(V ) ∈ τX .
(In Rn, it’s equivalent to the ε− δ definition.)

A bijection X
ϕ←→ Y is said to be a homeomorphism if it’s

continuous both ways.
We say X ∼ Y if there’s a homeomorphism between them;
they’re said to be topologically equivalent.

Homeomorphisms are important objects in Topology, since they
preserve many topological properties.
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The Hausdorff property

Given (X , τ) topological space, X is Hausdorff if
∀x , y ∈ X ,∃Ux ,Uy ∈ τ | Ux ∩ Uy = ∅, x ∈ Ux , y ∈ Uy

Metric spaces are trivially Hausdorff (take open balls around

x , y with radius d(x ,y)
2 ).
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A non-Hausdorff space

Consider the R line with two origins.
p

0

with τ topology generated by sets of the form (a, b) and
(a′, 0) ∪ {p} ∪ (0, b′).

p

0

It’s not Hausdorff, because every open set containing 0 (but
not p) also intersects every open set containing p (but not 0).
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with τ topology generated by sets of the form (a, b) and
(a′, 0) ∪ {p} ∪ (0, b′).

p

0

It’s not Hausdorff, because every open set containing 0 (but
not p) also intersects every open set containing p (but not 0).
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Connected Spaces

There are two equivalent definitions for disconnected (and
connected) spaces:

(X , τ) is disconnected if
X = A ∪ B, where
A,B ∈ τ and A ∩ B = ∅.
X is connected if it’s not
disconnected.

(X , τ) is disconnected if there is some
continuous surjection
f : (X , τ)→ ({0, 1},P({0, 1})).
X is connected if it’s not
disconnected, i.e., every continuous
f : X → {0, 1} is constant.



Topology (and
Metrics) for

the Young at
Heart

Nicholas
Funari Voltani

Motivation

Some
characteristics of
R

Metric Spaces

Some examples

Pseudometrics

Topological
Spaces

Open and Closed
Sets

Some examples

Interior and
Closure

Continuity

Topological
Properties

Hausdorff
property

Connectedness

Path-
Connectedness

Simply
Connected
Spaces

Compactness

Applications

Connected Spaces

There are two equivalent definitions for disconnected (and
connected) spaces:

(X , τ) is disconnected if
X = A ∪ B, where
A,B ∈ τ and A ∩ B = ∅.
X is connected if it’s not
disconnected.

(X , τ) is disconnected if there is some
continuous surjection
f : (X , τ)→ ({0, 1},P({0, 1})).
X is connected if it’s not
disconnected, i.e., every continuous
f : X → {0, 1} is constant.



Topology (and
Metrics) for

the Young at
Heart

Nicholas
Funari Voltani

Motivation

Some
characteristics of
R

Metric Spaces

Some examples

Pseudometrics

Topological
Spaces

Open and Closed
Sets

Some examples

Interior and
Closure

Continuity

Topological
Properties

Hausdorff
property

Connectedness

Path-
Connectedness

Simply
Connected
Spaces

Compactness

Applications

Connected Spaces

There are two equivalent definitions for disconnected (and
connected) spaces:

(X , τ) is disconnected if
X = A ∪ B, where
A,B ∈ τ and A ∩ B = ∅.
X is connected if it’s not
disconnected.

(X , τ) is disconnected if there is some
continuous surjection
f : (X , τ)→ ({0, 1},P({0, 1})).
X is connected if it’s not
disconnected, i.e., every continuous
f : X → {0, 1} is constant.



Topology (and
Metrics) for

the Young at
Heart

Nicholas
Funari Voltani

Motivation

Some
characteristics of
R

Metric Spaces

Some examples

Pseudometrics

Topological
Spaces

Open and Closed
Sets

Some examples

Interior and
Closure

Continuity

Topological
Properties

Hausdorff
property

Connectedness

Path-
Connectedness

Simply
Connected
Spaces

Compactness

Applications

Connected Spaces

There are two equivalent definitions for disconnected (and
connected) spaces:

(X , τ) is disconnected if
X = A ∪ B, where
A,B ∈ τ and A ∩ B = ∅.
X is connected if it’s not
disconnected.

(X , τ) is disconnected if there is some
continuous surjection
f : (X , τ)→ ({0, 1},P({0, 1})).
X is connected if it’s not
disconnected, i.e., every continuous
f : X → {0, 1} is constant.



Topology (and
Metrics) for

the Young at
Heart

Nicholas
Funari Voltani

Motivation

Some
characteristics of
R

Metric Spaces

Some examples

Pseudometrics

Topological
Spaces

Open and Closed
Sets

Some examples

Interior and
Closure

Continuity

Topological
Properties

Hausdorff
property

Connectedness

Path-
Connectedness

Simply
Connected
Spaces

Compactness

Applications

Path-Connectedness

(X , τ) is path-connected if for every x , y ∈ X , there is a
continuous path γ : [0, 1]→ X , γ(0) = x , γ(1) = y .

Note that it’s a stronger condition than connectedness, since
disconnectedness =⇒ non-path-connectedness (there’s a gap
inbetween!).
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Examples of [Path-]Connected
Spaces

• Intervals (a, b) ⊂ R are path-connected (and, thus,
connected);

• intervals of the form (a, b) ∪ (b, c) = (a, c) \ {b} are
disconnected (and also fail to be path-connected).
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Fish Out of Water: A
Counterexample

The topologist’s sine curve
(
x , sin( 1

x )
)
∪ {0, 0} is connected,

but is not path-connected.
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Simply Connected Spaces

A more usual concept in Calculus is that of simply connected
spaces:
For every x , y ∈ X , every continuous path connecting them can
be deformed into any other continuous path connecting them.
Spaces with “holes” fail to be simply connected.
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Compact Sets

An open cover of K ⊂ X is a collection of open sets {Aλ}λ∈Λ

such that K ⊂
⋃
λ∈Λ

Aλ.

A set K ⊂ X is compact if, for every open cover {Aλ}λ∈Λ ⊂ τ ,
there is a finite open cover {Ak}nk=1 ⊂ {Aλ}λ∈Λ.
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Compactness in Rn

In Rn, compact sets are closed and bounded (with respect to

the Euclidean metric), of the form
n∏

k=1

[ak , bk ], and vice-versa

(by Heine-Borel Theorem).

A classic theorem from Calculus:
Weierstrass’ Theorem: A continuous function on a closed and
bounded set (i.e., compact) f : K ⊂ Rn → R is bounded, i.e.,
attains its maximum and minimum in K .
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Manifolds and General Relativity

A locally Euclidean space (dimension n) is a topological space
(X , τ) such that, for every p ∈ X , ∃Vp ∈ τ such that Vp is
homeomorphic to an open disk in Rn.

A topological manifold
(dimension n) is a triple
(X , τ,A),
τ topology,
A = {(Vα, ϕα)}α∈Λ atlas.
(Vα ∈ τ are locally Euclidean
open sets,
ϕα : Vα → Rn are their
homeomorphisms).

Spacetime in General Relativity is a 4-dimensional
C∞-differentiable manifold with a Lorentz metric.
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Hilbert Spaces and Quantum
Mechanics

Given a vector space H with an inner product <,>, one can
induce a norm by defining
||v || :=

√
< v , v >

Given a norm, one can induce a metric:
d(u, v) := ||u − v ||

A Hilbert Space is a vector space H endowed with an inner
product <,>, such that it’s a complete metric space (with its
induced metric) (i.e., Cauchy sequences converge in H).
Wavefunctions in Quantum Mechanics are unit vectors in
(H, <,>), and observables (momentum, position, etc.) are
Hermitian operators O : H → H.
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induce a norm by defining
||v || :=

√
< v , v >

Given a norm, one can induce a metric:
d(u, v) := ||u − v ||

A Hilbert Space is a vector space H endowed with an inner
product <,>, such that it’s a complete metric space (with its
induced metric) (i.e., Cauchy sequences converge in H).

Wavefunctions in Quantum Mechanics are unit vectors in
(H, <,>), and observables (momentum, position, etc.) are
Hermitian operators O : H → H.
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Obnoxious Math Jokes/Memes

Guess that’s enough for today.
Thank you for coming!
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