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Nature is just as lazy as us

Introduction

Lagrangian:

L(q1, q2, ... , qn, q̇1, q̇2, ... , q̇n, t) = L(q, q̇, t) = T − U

Action:

S =

∫ t2

t1

L dt
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Nature is just as lazy as us

Hamilton’s Principle

Hamilton’s Principle: The system’s physical path is the one for which the
action S is minimal.

δS = 0

∂L
∂qi
− d

dt

(
∂L
∂q̇i

)
= 0
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Nature is just as lazy as us

Apparently, we care about invariance

Change of coordinates (q −→ Q) :

Qk = Qk(q, t)

qk = qk(Q, t)

q̇k =
∑
i

(
∂qk
∂Qi

Q̇i

)
+
∂qk
∂t

And so, we have:

q̇k = q̇k(Q, Q̇, t)
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Nature is just as lazy as us

Apparently, we care about invariance

Transformed Lagrangian:

L̄(Q, Q̇, t) = L(q(Q, t), q̇(Q, Q̇, t), t)

∂L̄
∂Q̇i

=
∑
k

∂L
∂q̇k

∂qk
∂Qi

d

dt

(
∂L̄
∂Q̇i

)
=
∑
k

(
d

dt

(
∂L
∂q̇k

)
∂qk
∂Qi

+
∂L
∂q̇k

∂q̇k
∂Qi

)
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Nature is just as lazy as us

Apparently, we care about invariance

∂L̄
∂Qi

=
∑
k

(
∂L
∂qk

∂qk
∂QI

+
∂L
∂q̇k

∂q̇k
∂Qi

)
d

dt

(
∂L̄
∂Q̇i

)
− ∂L̄
∂Qi

=
∑
k

(
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

)
∂qk
∂Qi

= 0
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Getting less lazy

Legendre done wrong

The conjugate momentum:

pk =
∂L
∂q̇k

The hamiltonian:
H(q, p, t) =

∑
k

(pkq̇k)− L

It is the energy... kinda?
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Getting less lazy

Legendre done wrong

Hamilton’s equations:

ṗi = −∂H
∂qi

q̇i =
∂H
∂pi

There’s a third one, which we won’t really care about:

∂H
∂t

= −∂L
∂t
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Getting less lazy

Variational methods strike back

L =
∑
k

pkq̇k −H

We can write the action as:

S =

∫ t2

t1

∑
k

pkq̇k −H dt

This gives us Hamilton’s equations
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Invariance is on steroids now

Canonical transformations

Change of coordinates in phase space (q, p) −→ (Q,P ):

Qk = Qk(q, p, t) Pk = Pk(q, p, t)

Q̇i =
∂K
∂Pi

Ṗi = − ∂K
∂Qi

K(Q,P, t) is the transformed Hamiltonian.
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Invariance is on steroids now

Canonical transformations

∑
k

(PkdQk − pkdqk) + (K −H)dt = dΦ

If this equation is satisfied, we have a canonical transformation.
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Invariance is on steroids now

Generating Functions

Natural choice is Φ = F (q,Q, t)

pi =
∂F

∂qi
Pi =

∂F

∂Qi

Transformed Hamiltonian is:

K(Q,P, t) = H(Q,P, t) +
∂F

∂t
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Invariance is on steroids now

More generating functions

New generating function:

G(q, P, t) =
∑
i

PiQi + F (q,Q(q, P, t), t)

Skipping a few steps:

pi =
∂G

∂qi
Qi =

∂G

∂Pi

And the transformed Hamiltonian is:

K = H+
∂G

∂t
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Invariance is on steroids now

Sympletic approach

Qi = Qi(q, p) Pi = Pi(q, p)

Q̇i =
∑
k

∂Qi
∂qk

q̇k +
∂Qi
∂pk

ṗk

Q̇i =
∑
k

∂Qi
∂qk

∂H

∂pk
− ∂Qi
∂pk

∂H

∂qk
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Invariance is on steroids now

Sympletic approach

Inverse:
qk = qk(Q,P ) pk = pk(Q,P )

Then:
∂H
∂Pi

=
∑
k

∂H
∂qk

∂qk
∂Pi

+
∂H
∂pk

∂pk
∂Pi
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Invariance is on steroids now

Sympletic Approach

Q̇i =
∂H
∂Pi

if:

(
∂Qi
∂qk

)
(q,p)

=

(
∂qk
∂Pi

)
(Q,P )

(
∂Qi
∂pk

)
(q,p)

= −
(
∂pk
∂Pi

)
(Q,P )
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Invariance is on steroids now

All over again

Same procedure with Ṗi and ∂H
∂Qi

:(
∂Pi
∂qk

)
(q,p)

= −
(
∂pk
∂Qi

)
(Q,P )

(
∂Pi
∂pk

)
(q,p)

=

(
∂qk
∂Qi

)
(Q,P )

K(Q,P, t) = H(q(Q,P ), p(Q,P ), t)
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Invariance is on steroids now

We love matrices

η̂ =



q1
q2
...
qn
p1
p2
...
pn


ζ̂(η̂) =



Q1(q, p)
Q2(q, p)

...
Qn(q, p)
P1(q, p)
P2(q, p)

...
Pn(q, p)


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Invariance is on steroids now

We love matrices

∂H
∂η̂

=



∂H
∂q1
...
∂H
∂qn

∂H
∂p1
...
∂H
∂pn


∂H
∂ζ̂

=



∂H
∂Q1

...
∂H
∂Qn

∂H
∂P1

...
∂H
∂Pn


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Invariance is on steroids now

We love matrices

Ĵ =

(
On In
−In On

)
Ĵ2 = −I2n

ĴT Ĵ = Ĵ ĴT = −Ĵ

det Ĵ = 1
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Invariance is on steroids now

We love matrices

Hamilton’s equations for (q, p) and (Q,P ):

ˆ̇η = Ĵ
∂H
∂η̂

ˆ̇
ζ = Ĵ

∂H
∂ζ̂

ˆ̇
ζ = M̂ ˆ̇η

∂H
∂η̂

= M̂T ∂H
∂ζ̂
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Invariance is on steroids now

I promise this simplifies things

Then:

Ĵ
∂H
∂ζ̂

= M̂ĴM̂T ∂H
∂ζ̂

M̂ ĴM̂T = M̂T ĴM̂ = Ĵ

Canonical transformation jacobian matrices are part of the sympletic group
Sp(2n,R)
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Invariance is on steroids now

Poisson Brackets

F (q, q̇, t):

dF

dt
=
∑
k

∂F

∂qk

∂H
∂pk
− ∂F

pk

∂H
∂qk

+
∂F

∂t

dF

dt
= {F,H}+

∂F

∂t

{F,G} =
∑
k

∂F

∂qk

∂G

∂pk
− ∂F

pk

∂G

∂qk
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Invariance is on steroids now

Canonical invariants

{F,G}η̂ =

(
∂F

∂η̂

)T
Ĵ
∂G

∂η̂

{F,G}η̂ =

(
M̂T ∂F

∂ζ̂

)T
Ĵ

(
M̂T ∂G

∂ζ̂

)

Pedro Tredezini (IFUSP) Connecting Dots March 14, 2019



Invariance is on steroids now

Canonical invariants

{F,G}η̂ =

(
∂F

∂ζ̂

)T
M̂ĴM̂T ∂G

∂ζ̂

{F,G}η̂ = {F,G}ζ̂
Poisson brackets are canonical invariants!
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Invariance is on steroids now

Poisson brackets and Quantum Theory

Properties:
{A,B} = −{B,A}

{A+ αB,C} = {A,C}+ α{B,C}
{AB,C} = A{B,C}+ {A,C}B

{{A,B}, C}+ {{B,C}, A}+ {{C,A}, B} = 0
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Invariance is on steroids now

Poisson brackets and Quantum Theory

Generates a Lie Algebra!

What else generates a Lie Algebra? Cross product and matrix commutator!

Similarities between theories: Heisenberg’s representation and Poisson
Brackets formulation:

1

i~
[Â, B̂]

~−→0−−−→ {A,B}
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Action as a generator

Infinitesimal transformations

Qi = qi + δqi = qi + εfi(q, p, t) Pi = pi + δpi = pi + εgi(q, p, t)

Remember: ∑
i

pidqi − PidQi = dΦ

Using Φ = εF : ∑
i

gidqi + pidfi = −dF
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Action as a generator

Infinitesimal transformations

G =
∑
i

pifi + F :

∑
i

gidqi − fidpi = −dG

δη̂ = ε{η̂, G}
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Action as a generator

Time evolution

ε = dt G = H

δqi = q̇idt δpi = ṗidt

Qi = qi(t+ dt) Pi = pi(t+ dt)
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Action as a generator

Time evolution

t −→ t+ dt:
Φ = εF = dt(H −

∑
i

piq̇i) = −L dt

t0 −→ t:

Φ = −
∫ t

t0

L dt = −S

t −→ t0:
Φ = S
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Almost There

Almost There
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Almost There

Hamilton-Jacobi Equation

Generating function F (q, P, t):

pi =
∂F

∂qi
Qi =

∂F

∂Pi

H+
∂F

∂t
= K
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Almost There

Hamilton-Jacobi Equation

K = 0

Qi = βi Pi = αi

H(q, p, t) +
∂F

∂t
= 0

pi =
∂F

∂qi
βi =

∂F

∂αi
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Almost There

Hamilton-Jacobi Equation

F = S(q, α, t)

Hamilton-Jacobi Equation:

H(q,
∂S

∂q
, t) +

∂S

∂t
= 0
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Almost There

Hamilton-Jacobi Equation

dS

dt
=
∑
i

∂S

∂qi
q̇i +

∂S

∂t

dS

dt
=
∑
i

piq̇i −H = L

S =

∫
L dt + constant
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Almost There

Separation of variables

H independent of time:
S = W (q)− α1t

α1 = H
∂S

∂qi
=
∂W

∂qi
= pi
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Almost There

Separation of variables

H independent of qi:

S = W1(q1, ... , qi−1, qi+1, ... , qn, t) + αiqi
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Grand Finale

Grand Finale
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Grand Finale

Geometric Optics

1

2m

((
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2
)

+ V (x, y, z) +
∂S

∂t
= 0

1

2m
|∇S|2 + V (x, y, z) +

∂S

∂t
= 0

S(x, y, z, t) = W (x, y, z)− Et
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Grand Finale

Geometric Optics

~p = ∇W and |∇W | =
√

2m(E − V )

S = Phase
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Grand Finale

Geometric Optics

Two surfaces S = C:
dW

dt
− E = 0

E = |∇W |dl
dt

dl

dt
= v =

E√
2m(E − V )
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Grand Finale

Geometric Optics

Phase velocity 6= particle’s velocity!

vg =
dω

dt

p = ~k E = 2π~ν

ω =
V

~
+

~k2

2m
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Grand Finale

Geometric Optics

vg =
dω

dk
=

~k
m

vg =
p

m
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Grand Finale

Schrödinger’s Equation

Schrödinger conjectured:

Ψ = exp

{
iS

~

}
S = −i~ ln Ψ

∂S

∂x
=
−i~
Ψ

∂Ψ

∂x
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Grand Finale

Schrödinger’s Equation

−~2

2mΨ2
|∇Ψ|2 + V =

i~
Ψ

∂Ψ

∂t

Wrong??
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Grand Finale

Schrödinger’s Equation

∂2S

∂x2
=

i~
Ψ2

(
∂Ψ

∂x

)2

− i~
Ψ

∂2Ψ

∂x2

∂2S

∂x2
=
∂px
∂x

=
∂2L
∂x∂ẋ

L =
m(ẋ2 + ẏ2 + ż2)

2
− V (x, y, z)
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Grand Finale

Schrödinger’s Equation

∂2S

∂x2
= 0

1

Ψ

(
∂Ψ

∂x

)2

=
∂2Ψ

∂x2

1

Ψ
|∇Ψ|2 = ∇2Ψ
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Grand Finale

Schrödinger’s Equation

−~2

2m
∇2Ψ + VΨ = i~

∂Ψ

∂t

Using S(x, y, z, t) = W (x, y, z)− Et:

−~2

2m
∇2Ψ + VΨ = EΨ
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