Connecting Dots

From Hamilton's Principle to Schrödinger's Equation

Pedro Tredezini
Institute of Physics

March 14, 2019

Table of contents

1 Nature is just as lazy as us
2 Getting less lazy

3 Invariance is on steroids now

4 Action as a generator

5 Almost There

6 Grand Finale

Nature is just as lazy as us

Introduction

Lagrangian:

$$
\mathcal{L}\left(q_{1}, q_{2}, \ldots, q_{n}, \dot{q}_{1}, \dot{q_{2}}, \ldots, \dot{q_{n}}, t\right)=\mathcal{L}(q, \dot{q}, t)=T-U
$$

Action:

$$
S=\int_{t_{1}}^{t_{2}} \mathcal{L} \mathrm{dt}
$$

Hamilton's Principle

Hamilton's Principle: The system's physical path is the one for which the action S is minimal.

$$
\begin{gathered}
\delta S=0 \\
\frac{\partial \mathcal{L}}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}\right)=0
\end{gathered}
$$

Apparently, we care about invariance

Change of coordinates $(\mathrm{q} \rightarrow Q)$:

$$
\begin{gathered}
Q_{k}=Q_{k}(q, t) \\
q_{k}=q_{k}(Q, t) \\
\dot{q}_{k}=\sum_{i}\left(\frac{\partial q_{k}}{\partial Q_{i}} \dot{Q}_{i}\right)+\frac{\partial q_{k}}{\partial t}
\end{gathered}
$$

And so, we have:

$$
\dot{q}_{k}=\dot{q}_{k}(Q, \dot{Q}, t)
$$

Apparently, we care about invariance

Transformed Lagrangian:

$$
\begin{gathered}
\overline{\mathcal{L}}(Q, \dot{Q}, t)=\mathcal{L}(q(Q, t), \dot{q}(Q, \dot{Q}, t), t) \\
\frac{\partial \overline{\mathcal{L}}}{\partial \dot{Q}_{i}}=\sum_{k} \frac{\partial \mathcal{L}}{\partial \dot{q_{k}}} \frac{\partial q_{k}}{\partial Q_{i}} \\
\frac{d}{d t}\left(\frac{\partial \overline{\mathcal{L}}}{\partial \dot{Q_{i}}}\right)=\sum_{k}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q_{k}}}\right) \frac{\partial q_{k}}{\partial Q_{i}}+\frac{\partial \mathcal{L}}{\partial \dot{q_{k}}} \frac{\partial \dot{q_{k}}}{\partial Q_{i}}\right)
\end{gathered}
$$

Apparently, we care about invariance

$$
\begin{gathered}
\frac{\partial \overline{\mathcal{L}}}{\partial Q_{i}}=\sum_{k}\left(\frac{\partial \mathcal{L}}{\partial q_{k}} \frac{\partial q_{k}}{\partial Q_{I}}+\frac{\partial \mathcal{L}}{\partial \dot{q}_{k}} \frac{\partial \dot{q_{k}}}{\partial Q_{i}}\right) \\
\frac{d}{d t}\left(\frac{\partial \overline{\mathcal{L}}}{\partial \dot{Q}_{i}}\right)-\frac{\partial \overline{\mathcal{L}}}{\partial Q_{i}}=\sum_{k}\left(\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q_{k}}}\right)-\frac{\partial \mathcal{L}}{\partial q_{k}}\right) \frac{\partial q_{k}}{\partial Q_{i}}=0
\end{gathered}
$$

Getting less lazy

Legendre done wrong

The conjugate momentum:

$$
p_{k}=\frac{\partial \mathcal{L}}{\partial \dot{q}_{k}}
$$

The hamiltonian:

$$
\mathcal{H}(q, p, t)=\sum_{k}\left(p_{k} \dot{q}_{k}\right)-\mathcal{L}
$$

It is the energy... kinda?

Legendre done wrong

Hamilton's equations:

$$
\dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}} \quad \dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}
$$

There's a third one, which we won't really care about:

Legendre done wrong

Hamilton's equations:

$$
\dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}} \quad \dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}
$$

There's a third one, which we won't really care about:

$$
\frac{\partial \mathcal{H}}{\partial t}=-\frac{\partial \mathcal{L}}{\partial t}
$$

Variational methods strike back

$$
\mathcal{L}=\sum_{k} p_{k} \dot{q_{k}}-H
$$

We can write the action as:

$$
S=\int_{t 1}^{t 2} \sum_{k} p_{k} \dot{q}_{k}-H \mathrm{dt}
$$

This gives us Hamilton's equations

Invariance is on steroids now

Canonical transformations

Change of coordinates in phase space $(q, p) \rightarrow(Q, P)$:

$$
\begin{gathered}
Q_{k}=Q_{k}(q, p, t) \quad P_{k}=P_{k}(q, p, t) \\
\dot{Q}_{i}=\frac{\partial \mathcal{K}}{\partial P_{i}} \quad \dot{P}_{i}=-\frac{\partial \mathcal{K}}{\partial Q_{i}}
\end{gathered}
$$

$\mathcal{K}(Q, P, t)$ is the transformed Hamiltonian.

Canonical transformations

$$
\sum_{k}\left(P_{k} d Q_{k}-p_{k} d q_{k}\right)+(\mathcal{K}-\mathcal{H}) d t=d \Phi
$$

If this equation is satisfied, we have a canonical transformation.

Generating Functions

Natural choice is $\Phi=F(q, Q, t)$

Transformed Hamiltonian is:

Generating Functions

Natural choice is $\Phi=F(q, Q, t)$

$$
p_{i}=\frac{\partial F}{\partial q_{i}} \quad P_{i}=\frac{\partial F}{\partial Q_{i}}
$$

Transformed Hamiltonian is:

Generating Functions

Natural choice is $\Phi=F(q, Q, t)$

$$
p_{i}=\frac{\partial F}{\partial q_{i}} \quad P_{i}=\frac{\partial F}{\partial Q_{i}}
$$

Transformed Hamiltonian is:

$$
\mathcal{K}(Q, P, t)=\mathcal{H}(Q, P, t)+\frac{\partial F}{\partial t}
$$

More generating functions

New generating function:

$$
G(q, P, t)=\sum_{i} P_{i} Q_{i}+F(q, Q(q, P, t), t)
$$

Skipping a few steps:

And the transformed Hamiltonian is:

More generating functions

New generating function:

$$
G(q, P, t)=\sum_{i} P_{i} Q_{i}+F(q, Q(q, P, t), t)
$$

Skipping a few steps:

$$
p_{i}=\frac{\partial G}{\partial q_{i}} \quad Q_{i}=\frac{\partial G}{\partial P_{i}}
$$

And the transformed Hamiltonian is:

More generating functions

New generating function:

$$
G(q, P, t)=\sum_{i} P_{i} Q_{i}+F(q, Q(q, P, t), t)
$$

Skipping a few steps:

$$
p_{i}=\frac{\partial G}{\partial q_{i}} \quad Q_{i}=\frac{\partial G}{\partial P_{i}}
$$

And the transformed Hamiltonian is:

$$
\mathcal{K}=\mathcal{H}+\frac{\partial G}{\partial t}
$$

Sympletic approach

$$
\begin{aligned}
Q_{i} & =Q_{i}(q, p) \quad P_{i}=P_{i}(q, p) \\
\dot{Q}_{i} & =\sum_{k} \frac{\partial Q_{i}}{\partial q_{k}} \dot{q}_{k}+\frac{\partial Q_{i}}{\partial p_{k}} \dot{p}_{k}
\end{aligned}
$$

Sympletic approach

$$
\begin{gathered}
Q_{i}=Q_{i}(q, p) \quad P_{i}=P_{i}(q, p) \\
\dot{Q}_{i}=\sum_{k} \frac{\partial Q_{i}}{\partial q_{k}} \dot{q_{k}}+\frac{\partial Q_{i}}{\partial p_{k}} \dot{p_{k}} \\
\dot{Q}_{i}=\sum_{k} \frac{\partial Q_{i}}{\partial q_{k}} \frac{\partial H}{\partial p_{k}}-\frac{\partial Q_{i}}{\partial p_{k}} \frac{\partial H}{\partial q_{k}}
\end{gathered}
$$

Sympletic approach

Inverse:

$$
q_{k}=q_{k}(Q, P) \quad p_{k}=p_{k}(Q, P)
$$

Sympletic approach

Inverse:

$$
q_{k}=q_{k}(Q, P) \quad p_{k}=p_{k}(Q, P)
$$

Then:

$$
\frac{\partial \mathcal{H}}{\partial P_{i}}=\sum_{k} \frac{\partial \mathcal{H}}{\partial q_{k}} \frac{\partial q_{k}}{\partial P_{i}}+\frac{\partial \mathcal{H}}{\partial p_{k}} \frac{\partial p_{k}}{\partial P_{i}}
$$

Sympletic Approach

$$
\begin{gathered}
\dot{Q}_{i}=\frac{\partial \mathcal{H}}{\partial P_{i}} \\
\text { if: }
\end{gathered}
$$

Sympletic Approach

$$
\begin{gathered}
\dot{Q}_{i}=\frac{\partial \mathcal{H}}{\partial P_{i}} \\
\text { if: } \\
\left(\frac{\partial Q_{i}}{\partial q_{k}}\right)_{(q, p)}=\left(\frac{\partial q_{k}}{\partial P_{i}}\right)_{(Q, P)}\left(\frac{\partial Q_{i}}{\partial p_{k}}\right)_{(q, p)}=-\left(\frac{\partial p_{k}}{\partial P_{i}}\right)_{(Q, P)}
\end{gathered}
$$

All over again

Same procedure with \dot{P}_{i} and $\frac{\partial \mathcal{H}}{\partial Q_{i}}$:

All over again

Same procedure with \dot{P}_{i} and $\frac{\partial \mathcal{H}}{\partial Q_{i}}$:

$$
\left(\frac{\partial P_{i}}{\partial q_{k}}\right)_{(q, p)}=-\left(\frac{\partial p_{k}}{\partial Q_{i}}\right)_{(Q, P)}\left(\frac{\partial P_{i}}{\partial p_{k}}\right)_{(q, p)}=\left(\frac{\partial q_{k}}{\partial Q_{i}}\right)_{(Q, P)}
$$

All over again

Same procedure with \dot{P}_{i} and $\frac{\partial \mathcal{H}}{\partial Q_{i}}$:

$$
\begin{gathered}
\left(\frac{\partial P_{i}}{\partial q_{k}}\right)_{(q, p)}=-\left(\frac{\partial p_{k}}{\partial Q_{i}}\right)_{(Q, P)}\left(\frac{\partial P_{i}}{\partial p_{k}}\right)_{(q, p)}=\left(\frac{\partial q_{k}}{\partial Q_{i}}\right)_{(Q, P)} \\
\mathcal{K}(Q, P, t)=\mathcal{H}(q(Q, P), p(Q, P), t)
\end{gathered}
$$

We love matrices

$$
\hat{\eta}=\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{n} \\
p_{1} \\
p_{2} \\
\vdots \\
p_{n}
\end{array}\right) \quad \hat{\zeta}(\hat{\eta})=\left(\begin{array}{c}
Q_{1}(q, p) \\
Q_{2}(q, p) \\
\vdots \\
Q_{n}(q, p) \\
P_{1}(q, p) \\
P_{2}(q, p) \\
\vdots \\
P_{n}(q, p)
\end{array}\right)
$$

We love matrices

$$
\frac{\partial \mathcal{H}}{\partial \hat{\eta}}=\left(\begin{array}{c}
\frac{\partial \mathcal{H}}{\partial q_{1}} \\
\vdots \\
\frac{\partial \mathcal{H}}{\partial q_{n}} \\
\frac{\partial \mathcal{H}}{\partial p_{1}} \\
\vdots \\
\frac{\partial \mathcal{H}}{\partial p_{n}}
\end{array}\right) \quad \frac{\partial \mathcal{H}}{\partial \hat{\zeta}}=\left(\begin{array}{c}
\frac{\partial \mathcal{H}}{\partial Q_{1}} \\
\vdots \\
\frac{\partial \mathcal{H}}{\partial Q_{n}} \\
\frac{\partial \mathcal{H}}{\partial P_{1}} \\
\vdots \\
\frac{\partial \mathcal{H}}{\partial P_{n}}
\end{array}\right)
$$

We love matrices

$$
\begin{gathered}
\hat{J}=\left(\begin{array}{cc}
\mathcal{O}_{n} & \mathcal{I}_{n} \\
-\mathcal{I}_{n} & \mathcal{O}_{n}
\end{array}\right) \\
\hat{J}^{2}=-\mathcal{I}_{2 n} \\
\hat{J}^{T} \hat{J}=\hat{J} \hat{J}^{T}=-\hat{J} \\
\operatorname{det} \hat{J}=1
\end{gathered}
$$

We love matrices

Hamilton's equations for (q, p) and (Q, P) :

We love matrices

Hamilton's equations for (q, p) and (Q, P) :

$$
\hat{\dot{\eta}}=\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\eta}} \hat{\dot{\zeta}}=\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}}
$$

We love matrices

Hamilton's equations for (q, p) and (Q, P) :

$$
\begin{gathered}
\hat{\dot{\eta}}=\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\eta}} \hat{\dot{\zeta}}=\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}} \\
\hat{\dot{\zeta}}=\hat{M} \hat{\dot{\eta}} \quad \frac{\partial \mathcal{H}}{\partial \hat{\eta}}=\hat{M}^{T} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}}
\end{gathered}
$$

promise this simplifies things

Then:

$$
\begin{aligned}
\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}} & =\hat{M} \hat{J} \hat{M}^{T} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}} \\
\hat{M} \hat{J} \hat{M}^{T} & =\hat{M}^{T} \hat{J} \hat{M}=\hat{J}
\end{aligned}
$$

Canonical transformation jacobian matrices are part of the sympletic group

I promise this simplifies things

Then:

$$
\begin{aligned}
\hat{J} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}} & =\hat{M} \hat{J} \hat{M}^{T} \frac{\partial \mathcal{H}}{\partial \hat{\zeta}} \\
\hat{M} \hat{J} \hat{M}^{T} & =\hat{M}^{T} \hat{J} \hat{M}=\hat{J}
\end{aligned}
$$

Canonical transformation jacobian matrices are part of the sympletic group $S p_{(2 n, \mathbb{R})}$

Poisson Brackets

$$
\begin{gathered}
F(q, \dot{q}, t): \\
\frac{d F}{d t}=\sum_{k} \frac{\partial F}{\partial q_{k}} \frac{\partial \mathcal{H}}{\partial p_{k}}-\frac{\partial F}{p_{k}} \frac{\partial \mathcal{H}}{\partial q_{k}}+\frac{\partial F}{\partial t} \\
\frac{d F}{d t}=\{F, H\}+\frac{\partial F}{\partial t} \\
\{F, G\}=\sum_{k} \frac{\partial F}{\partial q_{k}} \frac{\partial G}{\partial p_{k}}-\frac{\partial F}{p_{k}} \frac{\partial G}{\partial q_{k}}
\end{gathered}
$$

Canonical invariants

$$
\begin{gathered}
\{F, G\}_{\hat{\eta}}=\left(\frac{\partial F}{\partial \hat{\eta}}\right)^{T} \hat{J} \frac{\partial G}{\partial \hat{\eta}} \\
\{F, G\}_{\hat{\eta}}=\left(\hat{M}^{T} \frac{\partial F}{\partial \hat{\zeta}}\right)^{T} \hat{J}\left(\hat{M}^{T} \frac{\partial G}{\partial \hat{\zeta}}\right)
\end{gathered}
$$

Canonical invariants

$$
\begin{gathered}
\{F, G\}_{\hat{\eta}}=\left(\frac{\partial F}{\partial \hat{\zeta}}\right)^{T} \hat{M} \hat{J} \hat{M}^{T} \frac{\partial G}{\partial \hat{\zeta}} \\
\{F, G\}_{\hat{\eta}}=\{F, G\}_{\hat{\zeta}}
\end{gathered}
$$

Poisson brackets are canonical invariants!

Poisson brackets and Quantum Theory

Properties:

$$
\begin{gathered}
\{A, B\}=-\{B, A\} \\
\{A+\alpha B, C\}=\{A, C\}+\alpha\{B, C\} \\
\{A B, C\}=A\{B, C\}+\{A, C\} B \\
\{\{A, B\}, C\}+\{\{B, C\}, A\}+\{\{C, A\}, B\}=0
\end{gathered}
$$

Poisson brackets and Quantum Theory

Generates a Lie Algebra!

What else generates a Lie Algebra? Cross product and matrix commutator! Similarities between theories: Heisenberg's representation and Poisson Brackets formulation:

Poisson brackets and Quantum Theory

Generates a Lie Algebra!

What else generates a Lie Algebra? Cross product and matrix commutator!
Similarities between theories: Heisenberg's representation and Poisson Brackets formulation:

Poisson brackets and Quantum Theory

Generates a Lie Algebra!

What else generates a Lie Algebra? Cross product and matrix commutator!
Similarities between theories: Heisenberg's representation and Poisson Brackets formulation:

$$
\frac{1}{i \hbar}[\hat{A}, \hat{B}] \xrightarrow{\hbar \rightarrow 0}\{A, B\}
$$

Action as a generator

Infinitesimal transformations

$$
Q_{i}=q_{i}+\delta q_{i}=q_{i}+\epsilon f_{i}(q, p, t) \quad P_{i}=p_{i}+\delta p_{i}=p_{i}+\epsilon g_{i}(q, p, t)
$$

Infinitesimal transformations

$$
Q_{i}=q_{i}+\delta q_{i}=q_{i}+\epsilon f_{i}(q, p, t) \quad P_{i}=p_{i}+\delta p_{i}=p_{i}+\epsilon g_{i}(q, p, t)
$$

Remember:

$$
\sum_{i} p_{i} d q_{i}-P_{i} d Q_{i}=d \Phi
$$

Infinitesimal transformations

$$
Q_{i}=q_{i}+\delta q_{i}=q_{i}+\epsilon f_{i}(q, p, t) \quad P_{i}=p_{i}+\delta p_{i}=p_{i}+\epsilon g_{i}(q, p, t)
$$

Remember:

$$
\sum_{i} p_{i} d q_{i}-P_{i} d Q_{i}=d \Phi
$$

Using $\Phi=\epsilon F$:

$$
\sum_{i} g_{i} d q_{i}+p_{i} d f_{i}=-d F
$$

Infinitesimal transformations

$$
G=\sum_{i} p_{i} f_{i}+F:
$$

$$
\sum_{i} g_{i} d q_{i}-f_{i} d p_{i}=-d G
$$

$$
\delta \hat{\eta}=\epsilon\{\hat{\eta}, G\}
$$

Time evolution

$$
\begin{array}{rl}
\epsilon=\mathrm{dt} & G=\mathcal{H} \\
\delta q_{i}=\dot{q}_{i} \mathrm{dt} & \delta p_{i}=\dot{p}_{i} \mathrm{dt} \\
Q_{i}=q_{i}(t+\mathrm{dt}) & P_{i}=p_{i}(t+\mathrm{dt})
\end{array}
$$

Time evolution

$$
t \rightarrow t+d t:
$$

$$
\Phi=\epsilon F=\operatorname{dt}\left(H-\sum_{i} p_{i} \dot{q}_{i}\right)=-\mathcal{L} \mathrm{dt}
$$

Time evolution

$t \rightarrow t+d t:$

$$
\Phi=\epsilon F=\mathrm{dt}\left(H-\sum_{i} p_{i} \dot{q}_{i}\right)=-\mathcal{L} \mathrm{dt}
$$

$t_{0} \rightarrow t:$

$$
\Phi=-\int_{t_{0}}^{t} \mathcal{L} d t=-S
$$

Time evolution

$$
\begin{array}{cc}
t \rightarrow t+d t: & \Phi=\epsilon F=\mathrm{dt}\left(H-\sum_{i} p_{i} \dot{q}_{i}\right)=-\mathcal{L} \mathrm{dt} \\
t_{0} \rightarrow t: & \Phi=-\int_{t_{0}}^{t} \mathcal{L} \mathrm{dt}=-S \\
t \rightarrow t_{0}: & \Phi=S
\end{array}
$$

Almost There

Hamilton-Jacobi Equation

Generating function $F(q, P, t)$:

$$
\begin{gathered}
p_{i}=\frac{\partial F}{\partial q_{i}} \quad Q_{i}=\frac{\partial F}{\partial P_{i}} \\
\mathcal{H}+\frac{\partial F}{\partial t}=\mathcal{K}
\end{gathered}
$$

Hamilton-Jacobi Equation

$$
\begin{gathered}
\mathcal{K}=0 \\
Q_{i}=\beta_{i} \quad P_{i}=\alpha_{i} \\
\mathcal{H}(q, p, t)+\frac{\partial F}{\partial t}=0 \\
p_{i}=\frac{\partial F}{\partial q_{i}} \quad \beta_{i}=\frac{\partial F}{\partial \alpha_{i}}
\end{gathered}
$$

Hamilton-Jacobi Equation

$$
F=S(q, \alpha, t)
$$

Hamilton-Jacobi Equation:

$$
\mathcal{H}\left(q, \frac{\partial S}{\partial q}, t\right)+\frac{\partial S}{\partial t}=0
$$

Hamilton-Jacobi Equation

$$
\begin{aligned}
& \frac{d S}{d t}=\sum_{i} \frac{\partial S}{\partial q_{i}} \dot{q}_{i}+\frac{\partial S}{\partial t} \\
& \frac{d S}{d t}=\sum_{i} p_{i} \dot{q}_{i}-\mathcal{H}=\mathcal{L} \\
& S=\int \mathcal{L} \mathrm{dt}+\text { constant }
\end{aligned}
$$

Separation of variables

\mathcal{H} independent of time:

$$
\begin{gathered}
S=W(q)-\alpha_{1} t \\
\alpha_{1}=\mathcal{H} \\
\frac{\partial S}{\partial q_{i}}=\frac{\partial W}{\partial q_{i}}=p_{i}
\end{gathered}
$$

Separation of variables

\mathcal{H} independent of q_{i} :

$$
S=W_{1}\left(q_{1}, \ldots, q_{i-1}, q_{i+1}, \ldots, q_{n}, t\right)+\alpha_{i} q_{i}
$$

Grand Finale

Geometric Optics

$$
\begin{gathered}
\frac{1}{2 m}\left(\left(\frac{\partial S}{\partial x}\right)^{2}+\left(\frac{\partial S}{\partial y}\right)^{2}+\left(\frac{\partial S}{\partial z}\right)^{2}\right)+V(x, y, z)+\frac{\partial S}{\partial t}=0 \\
\frac{1}{2 m}|\nabla S|^{2}+V(x, y, z)+\frac{\partial S}{\partial t}=0 \\
S(x, y, z, t)=W(x, y, z)-E t
\end{gathered}
$$

Geometric Optics

$$
\begin{gathered}
\vec{p}=\nabla W \text { and }|\nabla W|=\sqrt{2 m(E-V)} \\
S=\text { Phase }
\end{gathered}
$$

Geometric Optics

Two surfaces $S=C$:

$$
\begin{gathered}
\frac{d W}{d t}-E=0 \\
E=|\nabla W| \frac{d l}{d t} \\
\frac{d l}{d t}=v=\frac{E}{\sqrt{2 m(E-V)}}
\end{gathered}
$$

Geometric Optics

Phase velocity \neq particle's velocity!

$$
\begin{gathered}
v_{g}=\frac{d \omega}{d t} \\
p=\hbar k \quad E=2 \pi \hbar \nu \\
\omega=\frac{V}{\hbar}+\frac{\hbar k^{2}}{2 m}
\end{gathered}
$$

Geometric Optics

$$
\begin{gathered}
v_{g}=\frac{d \omega}{d k}=\frac{\hbar k}{m} \\
v_{g}=\frac{p}{m}
\end{gathered}
$$

Schrödinger's Equation

Schrödinger conjectured:

$$
\begin{gathered}
\Psi=\exp \left\{\frac{i S}{\hbar}\right\} \\
S=-i \hbar \ln \Psi \\
\frac{\partial S}{\partial x}=\frac{-i \hbar}{\Psi} \frac{\partial \Psi}{\partial x}
\end{gathered}
$$

Schrödinger's Equation

$$
\frac{-\hbar^{2}}{2 m \Psi^{2}}|\nabla \Psi|^{2}+V=\frac{i \hbar}{\Psi} \frac{\partial \Psi}{\partial t}
$$

Wrong??

Schrödinger's Equation

$$
\begin{gathered}
\frac{\partial^{2} S}{\partial x^{2}}=\frac{i \hbar}{\Psi^{2}}\left(\frac{\partial \Psi}{\partial x}\right)^{2}-\frac{i \hbar}{\Psi} \frac{\partial^{2} \Psi}{\partial x^{2}} \\
\frac{\partial^{2} S}{\partial x^{2}}=\frac{\partial p_{x}}{\partial x}=\frac{\partial^{2} \mathcal{L}}{\partial x \partial \dot{x}} \\
\mathcal{L}=\frac{m\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)}{2}-V(x, y, z)
\end{gathered}
$$

Schrödinger's Equation

$$
\begin{gathered}
\frac{\partial^{2} S}{\partial x^{2}}=0 \\
\frac{1}{\Psi\left(\frac{\partial \Psi}{\partial x}\right)^{2}}=\frac{\partial^{2} \Psi}{\partial x^{2}} \\
\frac{1}{\Psi}|\nabla \Psi|^{2}=\nabla^{2} \Psi
\end{gathered}
$$

Schrödinger's Equation

$$
\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

Using $S(x, y, z, t)=W(x, y, z)-E t:$

$$
\frac{-\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=E \Psi
$$

