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In this work, I present an introduction to classical field theory by exploring the limiting case of
N coupled harmonic oscillators as N → ∞ in order to obtain the equation of motion for a vibrating
string. The Euler-Lagrange Equations for a collection of N three-dimensional fields are presented and,
finally, Noether’s Theorem is proved, with the stress-energy tensor and the conservation of electric
charge due to gauge invariance in QED being given as examples of application.
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I. VIBRATING STRINGS

Suppose you want to describe the motion of a vi-
brating string of length L and linear mass density µ
with clamped ends. A simple model for this situation
is considering a series of coupled harmonic oscillators
confined to movement in a single direction.Suppose
you want to describe the motion of a vibrating string of
length L and linear mass density µwith clamped ends.
A simplemodel for this situation is considering a series
of coupled springs, with spring constant k, confined to
movement in a single direction. Such oscillators should
each havemassm = µa, where a = L

N+1 is the distance
between two consecutive oscillators. The height of the
oscillator located at the position xi is given by a func-
tion qi(t). As the string should be clamped at its ends,
we impose that q0(t) = qN+1(t) = 0 at all times.
The kinetic energy Ki stored in the i-th oscillator is

Ki =
m

2
q̇2i . (1)

On the other hand, the potential energy Ui stored in
the spring between positions xi and xi+1 is given by

Ui =
k

2
(li − l)

2
, (2)

where l stands for the rest length of the spring (which
is equal for every spring here considered) and li is the
length of the spring between positions xi and xi+1,
which can be obtained through trigonometry. If the
angle the spring makes with the horizontal line is θ,
thenwe know that li = a·sec θ. Furthermore, we know
that tan θ = qi+1−qi

a
. Thus, as tan2 θ + 1 = sec2 θ, it

follows that

li = a

√
1+

(
qi+1 − qi

a

)2
. (3)
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Figure 1. A simple model for a vibrating string of length L
and linear mass density µ consists of N coupled harmonic
oscillators, each a distance a = L

N
apart from its neighbors

with massm = µa

Westillmust discoverwhat is the value of l. Weknow
that L0 = (N+ 1)l is the rest length of the string, while
it’s current length is (roughly1) L = (N + 1)a. If a ten-
sion τ is being applied in the string, thenwe know from
Hooke’s Law that τ = − k

N+1
((N+ 1)l− (N+ 1)a) (the

factor k
N+1 comes from associating springs in series)

and it follows that

τ

k
= a− l,

l = a−
τ

k
. (4)

Thus, we have that the energy stored in each spring

1 Don’t bother with this approximation right now, we are going to
justify it in a minute or two.
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is given by

Ui =
k

2

a
√
1+

(
qi+1 − qi

a

)2
+
τ

k
− a

2 ,
=
k

2
a2

(
1+

(
qi+1 − qi

a

)2)
+
k

2

(
a−

τ

k

)2
− ka

√
1+

(
qi+1 − qi

a

)2 (
a−

τ

k

)
. (5)

We will now make the assumption that the string
is vibrating under a regime of small oscillations, i.e.,
|qi+1 − qi| � a. Without this approximation, even
though the springs are being treated as linear,wewould
obtain a nonlinear behaviour, which is more appropri-
ate for a deeper analysis of the problem. For simplicity,
we are going to assume the string is being held really
tight and we can only disturb it slightly.

This assumption justifies the approximation we
made earlier that the length of the string is L = (N+1)a
(which is, in fact, also the definition of awe provided).
If the disturbances are small, indeed the length of string
is very close to L = (N+ 1)a and our treatment is justi-
fied.

By Taylor expanding the square root in Eq. 5, it
follows that

Ui =
k

2
a2

(
1+

(
qi+1 − qi

a

)2)
+
k

2

(
a−

τ

k

)2
− ka

(
1+

1

2

(
qi+1 − qi

a

)2)(
a−

τ

k

)
,

=
k

2
a2 +

k

2
(qi+1 − qi)

2 +
k

2

(
a−

τ

k

)2
+ aτ

− ka2 +
τ

2a
(qi+1 − qi)

2 −
k

2
(qi+1 − qi)

2
,

= −
k

2
a2 +

k

2

(
a−

τ

k

)2
+ aτ+

τ

2a
(qi+1 − qi)

2
.

(6)

We might now calculate the Lagrangian L = K − U
by summing Eqs. (1) and (6) over every mass and
spring. Recalling that constant terms may be dropped,
for they leave the Euler-Lagrange Equations unaltered,
it follows that

L =

N∑
i=1

Ki −

N∑
i=0

Ui,

=

N∑
i=1

m

2
q̇2i −

N∑
i=0

τ

2a
(qi+1 − qi)

2
. (7)

So far, we have only dealt with a discrete approxima-
tion for the string problem. Let us try to figure out a
way to take the limitN→∞ properly and obtain a full
description of the string.
The first step is simple: we are currently using a

finite number of degrees of freedom through the gen-
eralized coordinates qi. If we want to describe a con-
tinuous string, we should drop this description in fa-
vor of something that accepts a continuous indexation.
Thus, we are going to define a field φ(x, t) such that
φ(xi, t) = qi(t), ∀ i ∈ {i}

N+1
i=0 , ∀ t. Furthermore, we are

going to write ∆x ≡ a from now on, since this is the
spatial variation between two oscillators and our plan
is to take such a value to zero in the limiting case.
Recalling that m = µa, our Lagrangian should now

be written as

L =
∑

∆x

[
µ

2

(
∂φ(x, t)

∂t

)2]

−
∑

∆x

[
τ

2

(
φ(x+ ∆x, t) − φ(x, t)

∆x

)2]
. (8)

By taking the limit as N → ∞, and recalling that
L = N∆x remains constant, we obtain

L =

∫
µ

2

(
∂φ

∂t

)2
−
τ

2

(
∂φ

∂x

)2
dx . (9)

This motivates us to define a new function, named
Lagrangian density and denoted by L, such that

L =

∫
Ldx . (10)

II. EULER-LAGRANGE EQUATIONS

If wewant the description in terms of the Lagrangian
density to be useful, we must obtain the equations of
motion described by this quantity. The procedure is
fairly similar to theway one obtains the Euler-Lagrange
Equations for usual Lagrangians: apply Hamilton’s
Principle considering every possible field under the
given boundary conditions.
As the action is defined as S =

∫t2
t1

Ldt, in terms of
the Lagrangian density it becomes

S =

∫t2
t1

∫x2
x1

L(φ,
∂φ

∂x
,
∂φ

∂t
, x, t)dxdt . (11)

In a more general way, let us consider a Lagrangian
density describing N fields, each of them denoted by
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φi and collectively described as φ, in three spatial di-
mensions and one time dimension. The action is then

written as

S =

∫
Ω

L

(
φ,
∂φ

∂t
,∇φ, x, t

)
d4x . (12)

Hamilton’s Principle states that δS = 0. From
this knowledge, we will be able to obtain the Euler-
Lagrange Equations for our field theory.

With implicit summation over repeated indexes, we
have

δS =

∫t2
t1

∫
V

∂L

∂φα
δφα +

∂L

∂φ̇α
δφ̇α +

∂L

∂∇φα
δ∇φα d3xdt = 0. (13)

Let us first deal with the second term (the first term
is already as simple as we want). Notice that∫

Ω

∂L

∂φ̇α
δφ̇α d4x =

∫
Ω

∂L

∂φ̇α

∂ δφα

∂t
d4x ,

=

∫
V

[
∂L

∂φ̇α
δφα

∣∣∣∣t2
t1

d3x

−

∫
Ω

∂

∂t

(
∂L

∂φ̇α

)
δφα d4x . (14)

As said earlier, we are considering every possi-
ble field under the given boundary conditions. Thus,[
δφα

∣∣t2
t1

= 0. Thus,∫
Ω

∂L

∂φ̇α
δφ̇α d4x = −

∫
Ω

∂

∂t

(
∂L

∂φ̇α

)
δφα d4x . (15)

We must then apply a similar argument to the third
term in Eq. (13).

∫
Ω

∂L

∂∇φα
δ∇φα d4x =

∫
Ω

∂L

∂∇φα
∇(δφα)d4x . (16)

If we recall that

∇ · (fv) = f∇ · v + v · ∇f, (17)

then it follows from Gauss’s Theorem that

∫
Ω

∂L

∂∇φα
δ∇φα d4x =

∫t2
t1

∮
∂V

δφα
∂L

∂∇φα
· dadt

−

∫
Ω

∇ ·
(

∂L

∂∇φα

)
δφα d4x .

(18)
Once again, since we have fixed the boundary condi-

tions, δφα
∣∣
∂V

= 0. Thus,

∫
Ω

∂L

∂∇φα
δ∇φα d4x = −

∫
Ω

∇ ·
(

∂L

∂∇φα

)
δφα d4x .

(19)

By implementing Eqs. (15) and (19) into Eq. (13), we
obtain

∫
Ω

[
∂L

∂φα
−
∂

∂t

(
∂L

∂φ̇α

)
−∇ ·

(
∂L

∂∇φα

)]
δφα d4x = 0. (20)

As the equation must hold for every domain of inte-
gration, the integrand must be zero. As the equation
also must hold for every possible combination of vari-

ations in the fields δφα we finally conclude that

∂

∂t

(
∂L

∂φ̇α

)
+∇ ·

(
∂L

∂∇φα

)
−
∂L

∂φα
= 0. (21)
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As an example, let us consider the equations of mo-
tion described by the Lagrangian2 for the vibrating
string, obtained in Section I:

L =
µ

2

(
∂φ

∂t

)2
−
τ

2

(
∂φ

∂x

)2
. (22)

Thus, we have

∂L

∂φ
= 0,

∂L

∂(∂tφ)
= µ∂tφ,

∂L

∂(∂xφ)
= −τ∂xφ,

(23)

where we denote a partial derivative with respect to a
variable u as ∂u. Substitution in the Euler-Lagrange
Equations yields

µ
∂2φ

∂t2
− τ

∂2φ

∂x2
= 0, (24)

which is, indeed, the wave equation satisfied by the
string.

III. RELATIVISTIC FIELD THEORIES

One might be interested in consider field theories
under the light of the Theory of Relativity. It would
then be interesting for us to drop description in terms
of time and, instead, consider the coordinate x0 = ct,
allowing us to treat space-time in a coherent way.

Notice that the Euler-Lagrange Equations are kept
unchangedunder the scale transformation t→ x0 = ct,
for

∂

∂x0

(
∂L

∂(∂φα/∂x0 )

)
=
1

c

∂

∂t

(
c · ∂L

∂(∂φα/∂t )

)
. (25)

Thus, in terms of x0, we may write the Euler-
Lagrange Equations as

∂µ

(
∂L

∂(∂µφα)

)
−
∂L

∂φα
= 0, (26)

where, as usual,

∂µ ≡
∂

∂xµ
. (27)

2 Sometimes we shall refer to the Lagrangian density as simply “La-
grangian”. The difference should be made clear by the context.

For a given value of α, if φα is a scalar field it will
hold that ∂µφα is a one-form. In a similarmanner, if the
Lagrangian L is a scalar, then ∂L

∂(∂µφα)
is a four-vector3

and the first-term on the Euler-Lagrange Equations is a
scalar. Therefore, if we want the Euler-Lagrange Equa-
tions to be covariant, we must simply demand L to be
a scalar. As dx, the four-dimensional volume element,
is invariant under Lorentz Transformations, the action
S =

∫
Ldx will be a scalar whenever the Lagrangian

is a scalar[1, 2], and thus the requirement of S to be
a scalar is another argument in defense of L being a
scalar quantity.

A. Maxwell’s Electrodynamics

As an example of a Relativistic Field Theory, we may
consider the Lagrangian for Maxwell’s Electrodynam-
ics4:

L = −
1

16π
FµνF

µν +
1

c
JµAµ, (28)

with

Fµν = ∂µAν − ∂νAµ. (29)

The four-vectors Jµ and Aµ are, in fact, covariant
forms of familiar quantities. Namely, they are the four-
current and four-potential, composed from the charge
density ρ, vector current density J, scalar potential V
and vector potential A as{

Jµ = (cρ, J) ,
Aµ = (V,A) .

(30)

We are now dealing with the fields φα ≡ Aα, where
α is a four-vector index. Our notationwill be simplified
if we write

Aµα ≡ ∂µAα. (31)

As ∂L
∂Aα

= 1
c
Jα, the Euler-Lagrange Equations be-

come

∂µ

(
∂L

∂Aµα

)
−
1

c
Jα = 0. (32)

3 Some texts refer to four-vectors as contravariant (four-)vectors and to
one-forms as covariant (four-)vectors. As I am unable to remember
which one is which, and therefore I shall stick to calling them
four-vectors and one-forms.

4 As you might know from Classical Electrodynamics, the system
of units we choose may change the way we express our equations.
We are sticking to Gaussian units. Furthermore, as you might
know from Relativity, the metric convention we choose may also
change the way we express our equations. We are sticking to the
(−+++)metric signature.
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We then make

∂L

∂Aµα
=

−1

16π

(
∂Fτν
∂Aµα

Fτν + Fτν
∂Fτν

∂Aµα

)
. (33)

But

Fτν
∂Fτν

∂Aµα
= gτβgνγF

βγ ∂F
τν

∂Aµα
,

= gβτgγν
∂Fτν

∂Aµα
Fβγ,

=
∂Fβγ

∂Aµα
Fβγ, (34)

where gµν is the metric tensor. Therefore,

∂L

∂Aµα
=

−1

8π

∂Fτν
∂Aµα

Fτν. (35)

However, we already know that Fµν = Aµν − Aνµ.
Thus,

∂Fτν
∂Aµα

= δµτδ
α
ν − δµνδ

α
τ,

∂Fτν
∂Aµα

Fτν = δµτδ
α
νF
τν − δµνδ

α
τF
τν,

= Fµα − Fαµ,

= 2Fµα,

∂L

∂Aµα
= −

1

4π
Fµα,

∂L

∂Aµα
=
1

4π
Fαµ (36)

Substitution in Eq. (32) yields

∂νF
µν =

4π

c
Jµ, (37)

which is the covariant form of the inhomogeneous
Maxwell’s Equations. Indeed, suppose µ = 0. Then,
since J0 = cρ (Eq. (30)),

∂νF
0ν = 4πρ,

∂ν
(
∂0Aν − ∂νA0

)
= 4πρ,

∂ν

(
1

c

∂

∂t
Aν + ∂νV

)
= 4πρ. (38)

Opening up the derivatives,

4πρ =
1

c

∂

∂t

(
1

c

∂V

∂t
+∇ ·A

)
+∇2V −

1

c

∂2V

∂t2
,

= −∇ ·
(
1

c

∂A
∂t

+∇V
)
. (39)

We know from Classical Electrodynamics[3, 4] that
the electric field, E, is given in terms of the potentials V
and A by

E = −∇V −
1

c

∂A
∂t
. (40)

Therefore, we obtain

∇ · E = 4πρ, (41)

which is Gauss’s Law.
If, on the other hand, we pick µ = i, i = 1, 2, 3, it

follows from the fact that Ji = Ji, where Ji denotes the
i-th component of the current density vector J, that

4π

c
Ji = ∂νF

iν,

= ∂ν
(
∂iAν − ∂νAi

)
,

= ∂ν

(
∂

∂xi
Aν − ∂νAi

)
,

=
∂

∂xi

(
1

c

∂V

∂t
+∇ ·A

)
−∇2Ai +

1

c2
∂2Ai

∂t2
.

(42)

If we join these components in a single vector-
equation, we get

4π

c
J =∇

(
1

c

∂V

∂t
+∇ ·A

)
−∇2A +

1

c2
∂2A
∂t2

,

=∇(∇ ·A) −∇2A +
1

c

∂

∂t

(
1

c

∂A
∂t

+∇V
)
,

=∇× (∇×A) −
1

c

∂E
∂t
, (43)

where we used that∇× (∇×A) =∇(∇ ·A) −∇2A.
As we know from Classical Electrodynamics[3, 4]

that the magnetic field B relates to the vector poten-
tial A through

B =∇×A, (44)

it follows then that

∇× B −
1

c

∂E
∂t

=
4π

c
J, (45)

which is the Ampère-Maxwell Law.
It appears that theEuler-LagrangeEquations only led

us to half ofMaxwell’s Equations, and therefore you are
probably wondering where are the others! They come
in fact from the definition Fµν = ∂µAν − ∂νAµ. Notice
that

∂τFµν = ∂τ∂µAν − ∂τ∂νAµ,

= ∂τ∂µAν − ∂ν∂τAµ. (46)
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Thus, it follows that

∂τFµν + ∂µFντ + ∂νFτµ = ∂τ∂µAν − ∂ν∂τAµ

+ ∂µ∂νAτ − ∂τ∂µAν

+ ∂ν∂τAµ − ∂µ∂νAτ. (47)

As you can see, every term on the right-hand side of
the expression cancels out and we are left with

∂τFµν + ∂µFντ + ∂νFτµ = 0, (48)

which I claim to be a covariant expression of the homo-
geneous Maxwell Equations.

Let µ = 1, ν = 2, τ = 3 and i, j, k = 1, 2, 3. Then, if
we open up Eq. (48) in terms of the four-potential (just
like in Eq. (47)), we get

0 = ∂3∂1A2 − ∂2∂3A1 + ∂1∂2A3

− ∂3∂1A2 + ∂2∂3A1 − ∂1∂2A3,

= ∂1 (∂2A3 − ∂3A2)

+ ∂2 (∂3A1 − ∂1A3)

+ ∂3 (∂1A2 − ∂2A1) ,

= ∂i
(
εijk∂jAk

)
, (49)

whereεijk denotes the Levi-Civita symbol (withε123 =
1).
In vector notation, we get

∇ · (∇×A) = 0. (50)

This might seem obvious, but if we recall that B =
∇×A, it follows that

∇ · B = 0, (51)

which is Gauss’s Law for Magnetism.
Finally, let µ = i, ν = j, τ = 0. Once again, we let

i, j = 1, 2, 3. Eq. (48) now yields

0 = ∂0∂iAj − ∂j∂0Ai + ∂i∂jA0

− ∂0∂iAj + ∂j∂0Ai − ∂i∂jA0. (52)

This equation holds ∀ i, j = 1, 2, 3. Let now k also
assume the values 1, 2, 3. We might now multiply the
equation as a whole by a Levi-Civita symbol and sum
over all repeated indexes, i.e.,

0 = εijk∂0∂iAj − ε
ijk∂j∂0Ai + ε

ijk∂i∂jA0

− εijk∂0∂iAj + ε
ijk∂j∂0Ai − ε

ijk∂i∂jA0. (53)

Notice that

εijk∂0∂iAj = ε
jik∂0∂jAi,

= −εijk∂0∂jAi. (54)

Furthermore,

εijk∂i∂jA0 = −εjik∂i∂jA0,

= −εijk∂j∂iA0,

= −εijk∂i∂jA0. (55)

Thus,

0 = εijk∂0∂iAj + ε
ijk∂i∂0Aj + ε

ijk∂i∂jA0

+ εijk∂0∂jAi + ε
ijk∂j∂0Ai + ε

ijk∂i∂jA0. (56)

After dividing the expression by 2, we obtain

0 = εijk∂0∂iAj + ε
ijk∂j∂0Ai + ε

ijk∂i∂jA0,

= εijk∂0∂iAj − ε
ijk∂i∂0Aj + ε

ijk∂i∂jA0,

= εijk∂i
(
∂jA0 + ∂0Aj

)
− εijk∂i∂0Aj,

= εijk
∂

∂xi

(
∂V

∂xj
+
1

c

∂Aj

∂t

)
− εijk

∂

∂xi

(
1

c

∂Aj

∂t

)
. (57)

In vector notation,

0 =∇×
(
∇V +

1

c

∂A
∂c

)
−
1

c

∂

∂t
(∇×A). (58)

If we recall one last time that E = −∇V − 1
c
∂A
∂t

and
B =∇×A, it follows that

∇× E +
1

c

∂B
∂t

= 0, (59)

which is Faraday’s Law.

IV. NOETHER’S THEOREM

We know from Hamiltonian Mechanics that,

dH
dt

= −
∂L

∂t
, (60)

where H denotes the Hamiltonian5 of a certain physi-
cal system described by the Lagrangian L. Therefore,
whenever theLagrangiandoes not depend explicitly on
time, the Hamiltonian is a constant of motion. Many
times, it happens thatH = E, whereE stands for energy,
and we say that energy is conserved.
However, the most remarkable thing is that the rea-

son for H to be conserved is that L does not depend
explicitly on time. Similarly, the canonical momentum

5 You might wonder whether Field Theory can be studied from the
Hamiltonian point of view. The answer is yes, and more details
can be found about that in references [1, 2, 4].
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p = ∂L
∂q̇

associated with the generalized coordinate q is
also conserved whenever ∂L

∂q
. The description of how

these conservation laws arise (in Classical Field The-
ory) from symmetries in the Lagrangian is the main
goal of this section.
We shall consider an infinitesimal transformation

such that{
xµ → x ′

µ
= xµ + ∆xµ,

φα(x)→ φ ′α(x
′) = φα(x) + ∆φα(x).

(61)

We also introduce the notation for the variation due
only to the change in form of φα:

δφα(x) = φ
′
α(x) − φα(x). (62)

Notice that

∆φα(x) = φ
′
α(x

′) − φα(x
′) + φα(x

′) − φα(x),

= δφα(x
′) + ∂µφα(x)∆x

µ. (63)

If we ignore the second-order terms in the infinitesi-
mal variations, it follows that

∆φα(x) = δφα(x) + φα;µ(x)∆x
µ. (64)

We also notice for further use that, since ∆ involves
evaluating the fields at different points in space-time,
∆∂µ 6= ∂µ∆. Inserting φα;ν in Eq. (64) yields

∆φα;ν(x) = δφα;ν(x) + φα;ν;µ(x)∆x
µ. (65)

Nevertheless, δ simply involves evaluating the field
before and after the transformation at the very same
point, and therefore it commutes with ∂µ.
Finally, the Lagrangian density will transform ac-

cording to

L(φα(x), φα;µ(x), x)→ L ′(φ ′α(x
′), φ ′α;µ(x

′), x ′). (66)

Assuming space-time is flat, we are going to prove
the existence of conserved quantities if this transforma-
tion satisfies the following properties

Form Invariance:: the functional form of the trans-
formed Lagrangian is equal to the original one,
i.e.

L ′(φ ′α(x
′), φ ′α;µ(x

′), x ′) = L(φ ′α(x
′), φ ′α;µ(x

′), x ′).

(67)

Invariance of the Action:: the numerical value of the
action integral is not changed by the transforma-
tion, i.e.,

∆S = S ′ − S = 0, (68)

where
S ′ =

∫
Ω′

L ′(φ ′α(x
′), φ ′α;µ(x

′), x ′)d4x ′ ,

S =

∫
Ω

L(φα(x), φα;µ(x), x)d4x .
(69)

We must now compute how the Lagrangian is af-
fected by the transformation. We are going to make
a little notation abuse right now and write L ′ ≡
L ′(φ ′α(x

′), φ ′α;µ(x
′), x ′) for simplicity. Taking our first

demand into consideration, we see that

L ′ = L(φ ′α(x
′), φ ′α;µ(x

′), x ′),

= L(φα(x) + ∆φα(x), φα;µ(x) + ∆φα,µ(x), x+ ∆x),

= L(φα(x), φα;µ(x), x) +
∂L

∂φα
∆φα

+
∂L

∂φα;µ
∆φα;µ +

∂L

∂xν
∆xν. (70)

If we now consider Eqs. (64) and (65), it follows that

L ′ = L+
∂L

∂φα
δφα +

∂L

∂φα

∂φα

∂xν
∆xν

+
∂L

∂φα;µ
δφα;µ +

∂L

∂φα;µ

∂φα;µ

∂xν
∆xν +

∂L

∂xν
∆xν,

= L+
∂L

∂φα
δφα +

∂L

∂φα;µ
δφα;µ +

dL
dxν

∆xν,

≡ L+ δL+
dL
dxν

∆xν. (71)

In the previous calculation, we write

dL
dxν

≡ ∂L

∂φα

∂φα

∂xν
+

∂L

∂φα;µ

∂φα;µ

∂xν
+
∂L

∂xν
(72)

to denote the partial derivative of the Lagrangian with
respect to xν without keeping the fields constant, i.e., we
also consider the contribution the fields give to the
derivative, as opposed to ∂L/∂xν , in which we con-
sider only the explicit dependence.

We must now change coordinates on the integral for
S ′ in order to express ∆S as an integral over x. We have

d4x ′ =
∂
(
x ′
0
, x ′

1
, x ′

2
, x ′

3
)

∂ (x0, x1, x2, x3)
d4x . (73)

In order to calculate the Jacobian determinant of the
transformation xν → xν + ∆xν, we must use the fact
that given a matrix J = 1 + εA, then

det J = 1+ ε trA+ O
(
ε2
)
, (74)

which is proved in the Appendix at page 11.
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The Jacobian matrix for xν → xν + ∆xν can be writ-
ten as J = 1+ J ′, where J ′ is the Jacobian matrix for the
transformation xν → ∆xν. As ∆xν is small, we can ne-
glect higher-order terms when computing tha Jacobian
determinant for xν → xν + ∆xν. Thus, we may apply
the aforementioned theorem in order to obtain

d4x ′ =
(
1+

∂∆xν

∂xν

)
d4x . (75)

In view of Eqs. (71) and (75), the expression for the
Invariance of the Action becomes∫
Ω

(
L+ δL+

dL
dxν

∆xν
)(

1+
∂∆xν

∂xν

)
− Ld4x = 0.

(76)

If we ignore variations of second order and above,
the expression simplifies to∫

Ω

L
∂∆xν

∂xν
+ δL+

dL
dxν

∆xν d4x = 0,∫
Ω

δL+
d

dxν
(L∆xν)d4x = 0. (77)

Notice that, by applying the Euler-Lagrange Equa-
tions6

δL =
∂L

∂φα
δφα +

∂L

∂φα;µ
δφα;µ ,

=
d

dxν

(
∂L

∂φα;ν

)
δφα +

∂L

∂φα;µ
δφα;µ ,

=
d

dxν

(
∂L

∂φα;ν
δφα

)
. (78)

If we substitute this result in Eq. (77), it follows that∫
Ω

d
dxν

(
∂L

∂φα;µ
δφα + L∆xν

)
d4x = 0. (79)

Eq. (79) can be put in a more convenient form if
we express δφα and ∆xν in terms of the infinitesimal
parameters that characterize the transformation. Let us
assume there are R such parameters, each one denoted
by εr with 1 6 r 6 R. Then we can write{

∆xν = Xν(r)εr,

∆φα = Ψ (r)
α εr.

(80)

6 You might be wondering why we are using d/dxµ instead of
∂/∂xµ on the Euler-Lagrange Equations. If you take a look on
our derivation of the equations, you will see that the derivatives
we are considering there, albeit partial, do consider the indirect
contributions due to the dependence of the fields on xµ.

One should be aware that, although the notationmay
suggest the opposite, the indices α and r are not nec-
essarily tensor indices, but summation over repeated
indices is implicit.

Due to Eq. (64), we get

δφα =
(
Ψ (r)
α − φα;νX

ν(r)
)
εr. (81)

If we define

Θµ(r) = −
∂L

∂φα;µ

(
Ψ (r)
α − φα;νX

ν(r)
)
− LXµ(r), (82)

then inserting Eqs. (80) and (81) into Eq. (79) yields

−

∫
Ω

dΘµ(r)

dxµ
εr d4x = 0, (83)

which is valid for every possible combination of εr and
any integration volume Ω. Due to this freedom, the
integral can only vanish if the integrand vanishes as
well, and thereforeweobtain the followingR continuity
equations:7

∂µΘ
µ(r) = 0. (84)

It is worth mentioning that these conserved currents
also may imply the existence of conserved charges. Let
Θµ(r) =

(
Θ0(r),Θ(r)

)
. Then we may write Eq. (84) in

vector notation as

∂Θ0(r)

∂x0
+∇ ·Θ(r) = 0. (85)

Integration over a volume V yields

d
dx0

∫
V

Θ0(r) d3x = −

∫
V

∇ ·Θ(r) d3x ,

= −

∮
∂V

Θ(r) · da . (86)

If V is the entire three-dimensional space and the
fields vanish sufficiently fast as the coordinates grow
towards infinity, the surface integral vanishes, implying
the global conservation of the quantities

C(r) =

∫
Θ0(r) d3x , (87)

which are known as Noether charges.

7 Since we are not differentiating anything while holding the fields
constant, it is possible to use the notation ∂µ again without any
risk of confusion.
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V. APPLICATIONS OF NOETHER’S THEOREM

A. The Stress-Energy Tensor

As a first example, let us consider symmetry under a
space-time translation, i.e.,

x ′
µ
= xµ + εµ, (88)

where εµ is a constant four-vector. The fields remain
unchanged.
As εµ is a constant, the Jacobian of the transforma-

tion is unity. Since the fields are unchanged, the action
will be kept invariant under this transformation if the
Lagrangian does not depend explicitly on the coordi-
nates.
Since {

εµ = Xµ(r)εr,

0 = Ψ (r)
α εr,

(89)

it follows that Xµν = gµν and Ψ (r)
α = 0. In this case,

r does have tensor character. If we substitute these
expressions into Eq. (82), we get

Tµν =
∂L

∂φα;µ
φα;τg

τν − Lgµν,

=
∂L

∂φα;µ

∂φα

∂xν
− Lgµν. (90)

The tensor Tµν is called the stress-energy tensor or
energy-momentum tensor.
The Noether charge associated to it is the four-vector

given by

pν =

∫
T0ν d3x . (91)

The zeroth component of T0ν is given by

T00 = −
∂L

∂φ̇α
φ̇+ L,

= −

(
∂L

∂φ̇α
φ̇− L

)
. (92)

This is in fact minus the Hamiltonian density, which
is used in the Hamiltonian treatment of Classical Field
Theory[1, 2]. It is then natural to say that T00 is minus
the energy density of the fields[5].
Therefore, p0 is, up to a signal, the integral of the

energy density of the fields, and therefore represent
the energy stored in the fields. Due to covariance
considerations and the knowledge that momentum is
preserved under spatial translations, we conclude that
pi, i = 1, 2, 3 are the components of the fields’ momen-
tum. This establishes pµ as the fields’ four-momentum
and justifies the term energy-momentum tensor.

B. The Conservation of Electric Charge

In order to obtain the conservation of electric charge,
let us consider the following Lagrangian

L = −
1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ− eψ̄γµψAµ. (93)

This Lagrangian describes the theory of Quantum
Electrodynamics (QED)[6–8]. The term

−
1

4
FµνF

µν (94)

is the same we have seen in the Lagrangian for
Maxwell’s Electrodynamics. The missing 4π is due to
a new choice of units: when dealing with High Energy
Physics it is customary to adopt a system of units such
that  h = c = 1. The term

ψ̄(iγµ∂µ −m)ψ (95)

gives rise to the Dirac equation for the motion of a
relativistic electron. Finally, the term

−eψ̄γµψAµ (96)

couples electrons and photons together, allowing them
to interact with each other, and matches the JµAµ we
had earlier, the sole difference being that we now are
dealing with a specific current given by Jµ = −eψ̄γµψ.
γµ are four 4 × 4 matrices satisfying {γµ, γν} =

−2gµν. A possible representation of these matrices
is the Weyl, or chiral, representation, given by

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (97)

where σi are the Pauli matrices.
Since γµ are 4 × 4 matrices, it is not that surprising

that ψ is a 4-component spinor. We define ψ̄ = ψ†γ0.
Let nowα(x) be some real function depending on the

space-time coordinates. Consider the following trans-
formation {

A′µ = Aµ + ∂µα(x),

ψ ′ = e−ieα(x)ψ.
(98)

Symmetries that are parametrized by a function such
as α(x) are said to be gauge of local symmetries. On
the other hand, if we had a constant α instead, we
would call it a global symmetry. Notice that every gauge
symmetry implies a global symmetry.

Notice that Fµν is left unchanged by this transforma-
tion:

F′µν = ∂µA
′
ν − ∂νA

′
µ,

= ∂µAν + ∂µ∂να(x) − ∂νAµ − ∂ν∂µα(x),

= ∂µAν − ∂νAµ. (99)
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Therefore, the term −1
4
FµνF

µν of the QED La-
grangian is left unchanged by the transformation.

In fact, the Lagrangian as a whole is left unchanged
as well. Indeed,

L′ = −
1

4
F′µνF

′µν + ψ̄′(iγµ∂µ −m)ψ′ − eψ̄′γµψ′A′µ,

= −
1

4
FµνF

µν + ψ̄e+ieα(x)(iγµ∂µ −m)e−ieα(x)ψ

− eψ̄e+ieα(x)γµe−ieα(x)ψAµ

− eψ̄e+ieα(x)γµe−ieα(x)ψ∂µα(x),

= −
1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ+ eψ̄γµψ∂µα(x)

− eψ̄γµψAµ − eψ̄γµψ∂µα(x),

= −
1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ− eψ̄γµψAµ,

= L. (100)

Thus, we have found a gauge symmetry in our La-
grangian. This also implies a global symmetry by
choosing α(x) = α ∈ R. Since ψ is multiplied by e−ieα,
with α ∈ R, the symmetry group associated to this
gauge transformation is U(1)[9].

If we pick an infinitesimal α, we get the following
transformation for the fields

{
A′µ = Aµ,

ψ ′ = (1− ieα)ψ,
(101)

with the space-time coordinates left unchanged. This

yields {
Xν(r) = 0,

Ψa = −ieψa,
(102)

where a stands for the spinorial index of ψ.
The Noether current is then given by8

Θµ = −
∂L

∂(∂µψ)
Ψ,

= ie
∂L

∂(∂µψ)
ψ,

= −eψ̄γµψ. (103)

However, this is simply the electric current density
we chose at the beginning of this section, i.e.,

Jµ = −eψ̄γµψ. (104)

Thus, Jµ is the Noether current associated with U(1)
gauge symmetry, and we may conclude that

∂µJ
µ = 0. (105)

One should notice that this derivation was made
possible when we coupled the electromagnetic field,
described by Aµ, to a matter field ψ responsible for
carrying the electric charge. Furthermore, we could
also couple some more fields (corresponding, e.g., to
muons and taus) and obtain a more robust result. The
current expressionwe have yields the conservation law
for charge carried by electrons and positrons only and
ignores any other charged particles.
It is also worth mentioning that ψ̄γµψ is the prob-

ability four-current density for the Dirac Equation[10].
Therefore, the electric four-current density is nothing
but the electron’s charge multiplied by its probability
four-current density.
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Appendix: Determinant of a Near-Identical Matrix

Theorem 1:
Let J = 1 + εA be a N×N matrix. Then it holds that

det J = 1+ ε trA+ O
(
ε2
)
. �

Proof:

Let uswrite ei for the elements of the canonical basis,
i.e., ei is the i-th column of 1. In a similar manner, let
us denote the i-th column of A by Ai.
Thedeterminant is amultilinear formon the columns

of J. Therefore,

det J = det (e1 + εA1, e2 + εA2, . . . , eN + εAN) ,

= det (e1, e2, . . . , eN) + εdet (A1, e2, . . . , eN)
+ εdet (e1, A2, . . . , eN) + · · ·
+ εdet (e1, e2, . . . , AN) + O

(
ε2
)
,

= 1+ ε (A11 +A22 + · · ·+ANN) + O
(
ε2
)
,

= 1+ ε trA+ O
(
ε2
)
. �

http://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
http://fma.if.usp.br/~llessa/files/Notes_on_Gauge_Theories.pdf
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